

Ancon

Querkraftdorne

für die Bauindustrie

Wir entwickeln, modellieren und produzieren technische Produkte und innovative Konstruktionslösungen, die dazu beitragen, architektonische Visionen in die Realität umzusetzen und unseren Baupartnern ermöglichen, besser, sicherer, stärker und schneller zu bauen.

Leviat ist einer der weltweit führenden Anbieter von Verbindungs-, Befestigungs-, Hebeund Verankerungstechnik.

Vom Bau neuer Schulen, Krankenhäuser, Wohnhäuser und Infrastrukturen bis hin zur Reparatur und Instandhaltung historischer Bauwerke – unsere Ingenieurskunst und Produkttechnologie machen weltweit einen Unterschied. Wir bieten technische Unterstützung in jeder Phase eines Projekts, von der ersten Planung bis zur Installation und darüber hinaus.

Unser technischer Support reicht von der einfachen Produktauswahl bis hin zur Entwicklung einer vollständig massgeschneiderten projektspezifischen Konstruktionslösung.

Hinter jedem Versprechen, das wir vor Ort geben, stehen das Engagement und die Erfahrung unseres globalen Teams.

Wir beschäftigen fast 3.000 Mitarbeiter an 60 Standorten in Nordamerika, Europa und im asiatisch-pazifischen Raum und bieten einen flexiblen und reaktionsschnellen Service weltweit.

Leviat, ein CRH-Unternehmen, ist Teil des weltweit führenden Baustoffunternehmens.

Lasttragende Verbindungen

Systeme, die robuste, effiziente Verbindungen und eine durchgehende Betonbewehrung zwischen Wänden, Platten, Säulen, Trägern und Balkonen herstellen und so die strukturelle Integrität sowie die thermische und akustische Leistung verbessern.

- Balkonanschlüsse
- Schraubanschlüsse
- Betonverbindungen
- Bewehrungsanschlüsse
- Durchstanzbewehrung
- Querkraftdorne
- Bodenfugensysteme
- BewehrteFertigteilstützen
- Infrastrukturprodukte
- Fertigteilverbindungen
- Schalldämmprodukte
- Vorspannung

Weitere Fachgebiete

Heben & Abstützen

Systeme für den sicheren und effizienten Transport, das Heben und die temporäre Aussteifung von gegossenen Betonelementen und aufklappbaren Platten, bevor dauerhafte strukturelle Verbindungen hergestellt werden.

Fassadenbefestigungen & -verstärkungen

Systeme für die sichere und thermisch effiziente Befestigung der äusseren Gebäudehülle, einschliesslich Ziegel und Naturstein, isolierte Sandwichpaneele, Vorhangfassaden und abgehängte Betonfassaden, sowie die Reparatur und Verstärkung bestehender Mauerwerke.

Verankern & Befestigen

Systeme zur Befestigung von Sekundärteilen in Beton, einschliesslich Ankerschienen, Bolzen und Dübeln; ausserdem Zugstabsysteme für Dächer und Vordächer.

Schalung & Zubehör

Nicht-strukturelles
Zubehör, das unsere
technischen Lösungen
ergänzt und dazu
beiträgt, dass Ihr
Bauumfeld sicher und
effizient funktioniert,
einschliesslich
Formen zum Giessen
von Standard- und
Spezialbetonelementen
und Bauzubehör wie
Abstandhalter für
Bewehrungsstäbe.

Industrietechnik

Montageschienen, Rohrschellen und andere modulare Installationssysteme, die eine sichere Befestigung in einer Vielzahl von industriellen Anwendungen ermöglichen.

Weitere Produktpaletten

vereinfachen die Ausführung und Konstruktion von Gebäudedehnfugen

Stahlbetonbauwerke werden heutzutage mit Dehnfugen ausgestattet, um dem Baukörper Dehn- und Schrumpfbewegungen zu ermöglichen, ohne dadurch Spannungen im Bauwerk aufzubauen. Die Auslegung dieser Fugen ist wichtig für die Gesamtkonstruktion und ihre einwandfreie Funktion.

Das Lieferprogramm an Ancon Querkraftdornen bietet einige Vorteile gegenüber herkömmlichen Verbindungen. Die Querkraftdorne übertragen die Lasten wirkungsvoller, sind einfacher einzubauen und ermöglichen eine genaue Justierung beim Einbauen.

Bemessungsprogramme

Diese von uns zur Verfügung gestellten Programme, bemessen die erforderlichen Querkraftdorne Ihrer Dehnfugen bei Stahlbetongebäuden.

Ausgehend von vorgegebenen Deckenstärken und zu übertragenden Lasten errechnet Ihnen die Ancon DSD bzw. HLD Bemessungsprogramme die Anzahl und Type der

erforderlichen Querkraftdorne. Die Rand- bzw. Achsabstände mit denen die Querkraftdorne eingebaut werden müssen, sowie die erforderliche Bewehrung für das Weiterleiten der Lasten in den Stahlbetonbauteil werden vom Programm angegeben. Die Software wird mit 6 Sprachen geliefert und kann somit in ganz Europa eingesetzt werden.

Inhalt

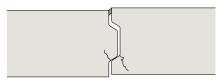
Herkömmliche Dehnfugen	4
Unsere Lösung für Baudehnfugen	5
Produktpalette für	
Ancon Querkraftdorne	6-9
Dorntypen ED/ESD/ESDQ	10-15
Dorntypen HLD/HLDQ	16-23
Dorntypen DSD/DSDQ/	
DSDS/DSDSQ	24-33

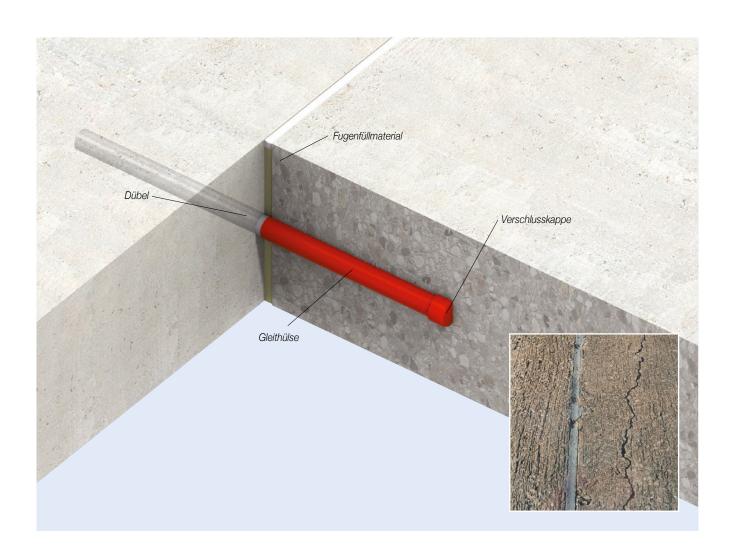
Dorntypen E-HLD	34-35
Einbauanleitung	36-37
Brandschutzmanschetten	38
Weitere Ancon Produkte	39

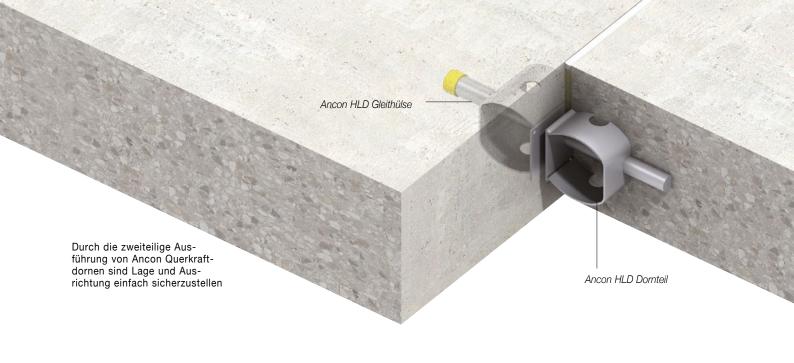


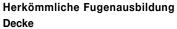
Herkömmliche Dehnfuge

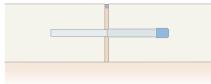
Querkraftdübeln werden verwendet um Querkräfte durch Baudehnfugen von einem Bauteil zum anderen zu übertragen. Sie werden entweder einbetoniert, oder nachträglich eingebohrt. Ein kurzer aber dicker Dübel ermöglicht eine gute Kraftübertragung verformt sich aber relativ stark. Das kann zu erhöhten Spannungen bis hin zum Abplatzen des Betons führen.

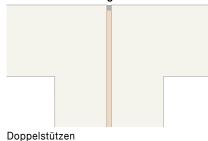

Bei Baudehnfugen muss eine Hälfte des Dübels mit einer passenden Hülse oder einer bituminösen Beschichtung verbundfrei gehalten werden, um sicherzustellen, dass sich die Bauteile im Endzustand auch frei bewegen können.


Bei diesen Konstruktionen muss jedoch entweder die Schalung durchbohrt werden um den Dübel stirnseitig einbetonieren zu können, oder der Dorn kann direkt in den Betonbauteil eingebohrt und -geklebt werden.

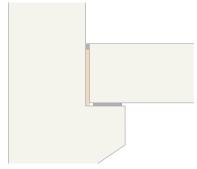



Verzahnte Baudehnfugen

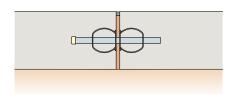

Verzahnte Fugen erfordern hohen Schalungsaufwand um Nut und Feder auszubilden. Wird die Verzahnung nicht planmäßig hergestellt, kann es zu unkontrollierten Bewegungen kommen. Da die Lastübertragung über einen geschwächten Betonquerschnitt erfolgt, kann es mit der Zeit zu Abplatzungen kommen.


Wand

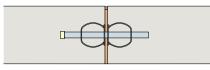
Dorn



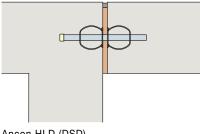
Konstruktive Dehnfugen

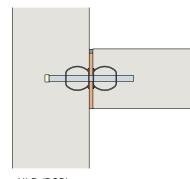


Verbindung Decke zu Wand



Konsolenauflager


Unsere Lösung


Ancon HLD (DSD)

Ancon HLD (DSD)

Ancon HLD (DSD)

Ancon HLD (DSD)

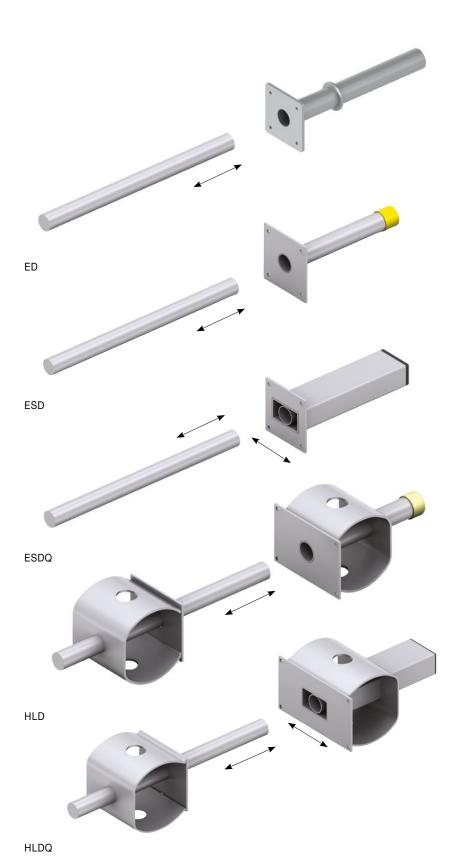
Unsere Lösung für Baudehnfugen

In den meisten Fällen lassen sich herkömmliche Dehnfugenkonstruktionen, wie Konsolen oder auch Ausführungen mit Nut und Feder, durch Ancon Querkraftdorne ersetzen.

Diese Querkraftdorne sind effektiver beim Übertragen der Kräfte und der zur Verfügung stehenden Bewegungsmöglichkeit. Weiter sind sie leicht auf der Schalung zu befestigen und stellen daher eine kosteneffektive Lösung dar.

Ancon Querkraftdorne können für Bewegungsfugen in Decken, zum Einhängen von Geschoßplatten und zur Eliminierung von Doppelstützen (Raumgewinn) bei Bewegungsfugen benutzt werden. Im Ingenieurbau werden sie in Fugen bei Brüstungen, an Brücken und in diversen Spezialfällen verwendet.

Bei Verwendung der Schubdorne in Spezialfällen, ist der Einbau und die Anordnung dieser Schubdorne zu prüfen.


Für Fragen hierzu kontaktieren Sie bitte unsere technische Abteilung.

Ancon Querkraftdorne

Die Produktpalette von Ancons Querkraftdornen ermöglicht Lösungen für viele verschiedene Anwendungsfälle, Deckenstärken und Fugenöffnungen.

Jeder Querkraftdorn besteht aus einem Hülsen- und einem Dornteil. Das Hülsenteil wird mit Nägeln an der Schalung befestigt und gibt damit die Lage des Dorns im Endzustand vor. Die komplette Einbauanleitung finden Sie auf Seite 36-37.

Ancon Querkraftdorne werden aus rostfreiem Stahl gefertigt, um eine hohe Korrosionsbeständigkeit ohne weitere Schutzmaßnahmen zu sichern.

Ancon ED

Der Querkraftdorn Typ Ancon ED ist die günstige Variante des ESD und wird vor allem bei geringen Lasten verwendet. Die Produktpalette umfasst auch hier sechs verschiedene Durchmesser, die jeweils in verschiedenen Standardlängen lieferbar sind. Der Dorn wird aus Duplex Material W. Nr. 1.4362 / 1.4462 hergestellt. Die Gleithülse ist aus hochwertigem Duraplast mit integrierter Nagelplatte gefertigt.

Ancon ESD

Der Querkraftdorn Typ Ancon ESD wird vor allem verwendet, wenn die Lasten gering sind. Die Produktpalette umfasst sechs verschiedene Durchmesser, die jeweils in verschiedenen Standardlängen lieferbar sind. Der Dorn wird aus Duplex Material W. Nr. 1.4362 / 1.4462 hergestellt. Die Edelstahlhülse mit integrierter Nagelplatte wird aus 1.4301 gefertigt.

Ancon ESDQ

Beim Querkraftdorn Typ Ancon ESDQ wird der gleiche Dornteil verwendet wie beim Typ ESD. Beim Hülsenteil jedoch, ist die zylindrische Hülse in die der Dornteil eingebracht wird, zusätzlich in einer Rechteckhülse gelagert, was neben der axialen Verschiebbarkeit auch noch eine Bewegung in Fugenlängsrichtung ermöglicht. Die Komponenten werden aus den selben Materialien gefertigt wie beim Typ ESD.

Ancon HLD

Der Ancon HLD ist ein hoch belastbarer Querkraftdorn. Der Dornteil kann sich im Hülsenteil in Dornlängsachse bewegen und damit Bauwerksbewegungen aufnehmen. Dieser Querkraftdorn wird in sieben Größen angeboten. Die Lasttabellen auf den Seiten 16-23 beinhalten auch die entsprechenden erforderlichen Deckenstärken ab 160 mm und Fugenöffnungen bis zu 60 mm. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301.

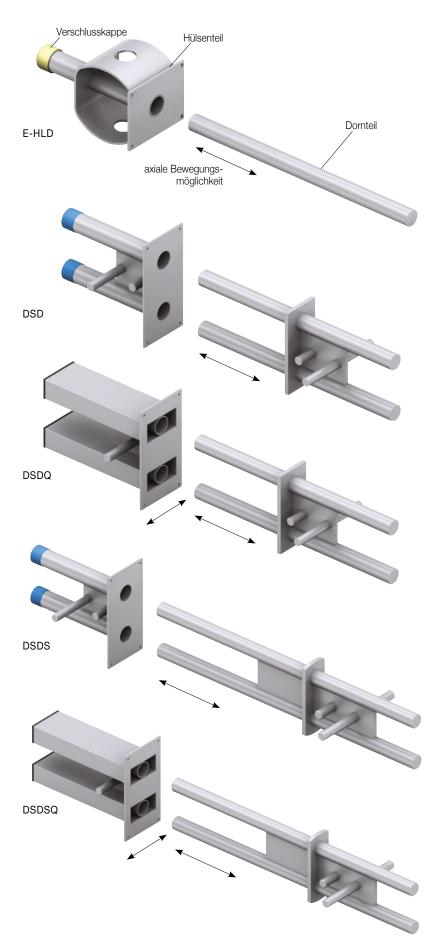
Ancon HLDQ

Der Dorntyp HLDQ arbeitet mit demselben Dornteil wie auch der HLD, jedoch die zylindrische Hülse ist zusätzlich noch in einem Rechteckrohr gelagert. Diese Hülse ermöglicht zusätzlich zu der axialen Bewegung des Dornes auch eine horizontale Verschiebung des Dornes in Dehnfugenlängsrichtung. Verfügbare Dimensionen, Belastungsdaten und Materialien entsprechen dem Typ HLD.

E-HLD

Der Ancon E-HLD Querkraftdorn verbindet neue Stahlbetondecken mit bereits bestehenden Betonwänden. Der Dorn wurde speziell für Decken entwickelt die nachträglich an Schlitzwände oder Bohrpfahlwände angeschlossen werden sollen, wie es bei Tiefbau-Projekten üblich ist. Der E-HLD besteht aus einem Edelstahl-Dorn und einer hoch-belastbaren Edelstahl-Hülse, und ist in sieben Standardgrößen verfügbar. Der Einbau des Dornes erfolgt mit Ancons Zwei-Komponenten-Kleber, der eine feste Verbindung zwischen Dorn und Beton sicherstellt.

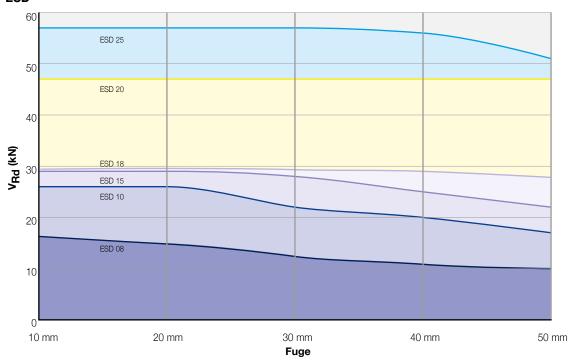
Ancon DSD


Der Ancon DSD ist ein hoch belastbarer Querkraftdorn. Der Dornteil kann sich im Hülsenteil in Dornlängsachse bewegen und damit Bauwerksbewegungen aufnehmen. Dieser Querkraftdorn wird in sieben Größen angeboten. Die Lasttabellen auf den Seiten 24-33 beinhalten auch die entsprechenden erforderlichen Deckenstärken ab 200 mm und Fugenöffnungen bis zu 60mm. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301.

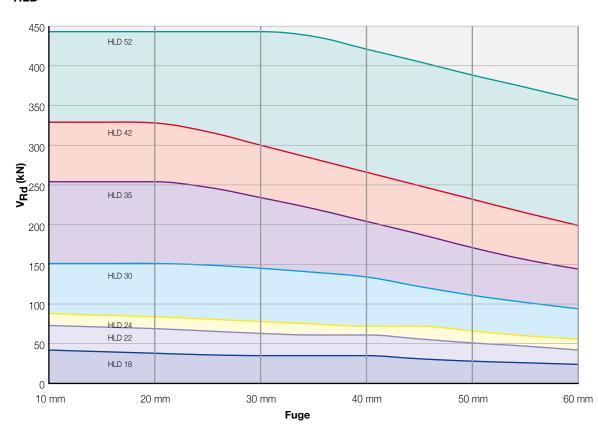
Ancon DSDQ

Der Dorntyp DSDQ arbeitet mit demselben Dornteil wie auch der DSD, jedoch die zylindrischen Hülsen sind zusätzlich noch in Rechteckrohren gelagert. Diese Hülse ermöglicht zusätzlich zu der axialen Bewegung des Dornes auch eine horizontale Verschiebung des Dornes in Dehnfugenlängsrichtung. Verfügbare Dimensionen, Belastungsdaten und Materialien entsprechen dem Typ DSD.

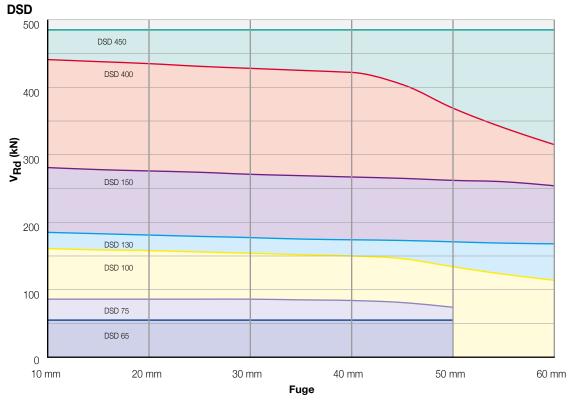
Ancon DSDS


Der Dorntyp DSDS ist grundsätzlich wie der normale DSD konzipiert. Der Dorn wurde jedoch durch eine im Bereich der Fuge zusätzlich eingeschweisste Stahlplatte für die Übertragung von Querkräften über große Fugen hinweg optimiert. Die Ausführung der Dornteile richtet sich nach der Fugengröße und wird als Standard für die Fugenöffnungen 6 cm, 8 cm und 10 cm angeboten. Auch dieser Dornteil kann sich im DSD Hülsenteil axial und im DSDQ Hülsenteil axial und horizontal bewegen und somit Bauwerksbewegungen aufnehmen. Dieser Dorn wird als Standard in zwei Größen angeboten. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301. Bei Bedarf sind auch größere Doppelschubdorne in der Ausführung DSDS für große Fugen erhältlich.

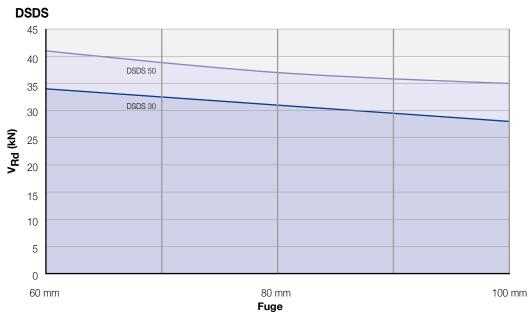
Übersicht der Traglasten


ED/ESD/ESDQ Traglasten in den Mindestdeckenstärken und bei einer minimalen Betongüte C25/30.

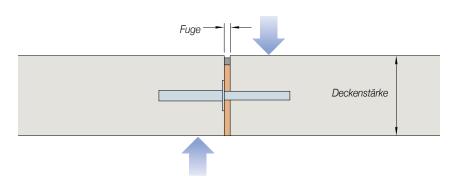
ESD

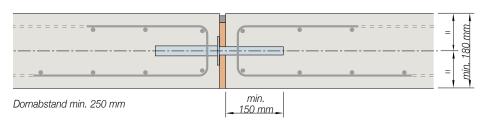


HLD/HLDQ Traglasten in den Mindestdeckenstärken und bei einer minimalen Betongüte C25/30.


HLD

 ${\tt DSDS/DSDSQ} \ {\tt Traglasten} \ {\tt in} \ {\tt den} \ {\tt Mindestdeckenst\"{a}rken} \ {\tt und} \ {\tt bei} \ {\tt einer} \ {\tt minimalen} \ {\tt Betong\"{u}te} \ {\tt C25/30}.$




Ancon ED

Der Querkraftdorn Typ Ancon ED ist die günstige Variante des ESD und wird vor allem bei geringen Lasten verwendet. Die Produktpalette umfasst auch hier sechs verschiedene Durchmesser die jeweils in verschiedenen Standardlängen lieferbar sind. Der Dorn wird aus Duplex Material (1.4362 / 1.4462) hergestellt. Die Gleithülse ist aus hochwertigem Duraplast mit integrierter Nagelplatte gefertigt.

Ancon ESD

Der Querkraftdorn Typ Ancon ESD wird vor allem verwendet, wenn die Lasten gering sind. Die Produktpalette umfasst sechs verschiedene Durchmesser die jeweils in verschiedenen Standardlängen lieferbar sind. Der Dorn wird aus Duplex Material (1.4362 / 1.4462) hergestellt. Die Edelstahlhülse mit integrierter Nagelplatte wird aus 1.4301 gefertigt.

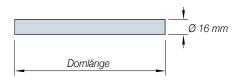
Ancon ED/ESD/ESDQ 8

Traglasten und Bewehrung

ED/ESD/ESDQ 8		V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)									
Fuge (mm)	180	200	220	240	260	280					
0	17	17	17	17	17	17					
10	17	17	17	17	17	17					
20	15	15	15	15	15	15					
30	13	13	13	13	13	13					
40	11	11	11	11	11	11					
50	10	10	10	10	10	10					

ESD 8 Stk. pro Dorn/ Hülse	180	рі	o Hülse	Bewehr en-/Dorr stärke (r 240	nseite	280
Bügel- beweh- rung Teilung*	4-10Ø 60mm			4-10Ø 100mm		
Längs- beweh- rung**	2-10Ø	2-10Ø	2-10Ø	2-10Ø	2-10Ø	2-10Ø

Jeweils zur Hälfte links und rechts des Einbauteiles anordnen

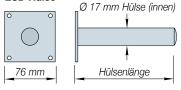

Abmessungen

ED 8		orn / 1.4462		ülse astik
Тур	Ø mm	Länge mm	Ø mm	Länge mm
ED 8 / 300	16	300	17	170
ED 8 / 350	16	350	17	195
ED 8 / 400	16	400	17	220
ED 8 / 500	16	500	17	270

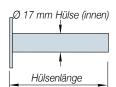
		Hülse 1.4301		
Ø mm	Länge mm	Ø mm	Länge mm	
16	300	17	170	
16	350	17	195	
16	400	17	220	
16	500	17	270	
	1.4362 Ø mm 16 16	mm mm 16 300 16 350 16 400	1.4362 / 1.4462 1.4662 Ø mm Länge mm Ø mm 16 300 17 16 350 17 16 400 17	

ESDQ 8		orn / 1.4462	Hülse 1.4301		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ESDQ 8 / 300	16	300	17	170	
ESDQ 8 / 350	16	350	17	195	
ESDQ 8 / 400	16	400	17	220	
ESDQ 8 / 500	16	500	17	270	

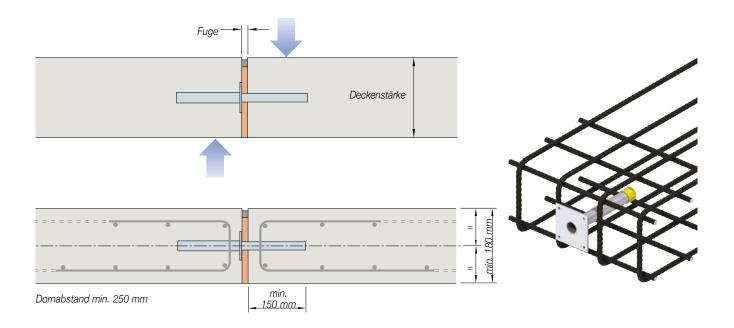
ED Dorn


ED Hülse

ESD/ESDQ Dorn



ESD Hülse


20 mm

Ober- und unterhalb des Einbauteiles anordnen

ED Dorne sind auf Anfrage auch in anderen Materialqualitäten lieferbar.

Ancon ED/ESD/ESDQ 10

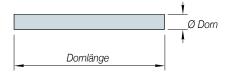
Traglasten und Bewehrung

ED/ESD/ESDQ 10	V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)							(kN) Be				
Fuge (mm)	180	200	220	240	260	280	180	200	220	240	260	280
0-10	26	27	27	27	27	27	29	30	30	30	30	30
20	26	26	26	26	26	26	26	26	26	26	26	26
30	22	22	22	22	22	22	22	22	22	22	22	22
40	20	20	20	20	20	20	20	20	20	20	20	20
50	17	17	17	17	17	17	17	17	17	17	17	17
60	16	16	16	16	16	16	16	16	16	16	16	16

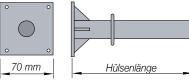
ESD 10 Stk. pro Dorn/ Hülse	180										
Bügel- beweh- rung Teilung*	4-10Ø			4-10Ø 100mm							
Längs- beweh- rung**	00111111			2-10Ø							

^{*} Jeweils zur Hälfte links und rechts des Einbauteiles anordnen ** Ober- und unterhalb des Einbauteiles anordnen

Abmessungen

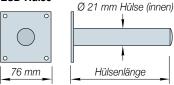

ED 10		orn / 1.4462		ülse astik
Тур	Ø mm	Länge mm	Ø mm	Länge mm
ED 10 / 300	20	300	21	170
ED 10 / 350	20	350	21	195
ED 10 / 400	20	400	21	220
ED 10 / 500	20	500	21	270

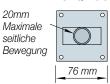
ESD 10		orn / 1.4462	Hülse 1.4301		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ESD 10 / 300	20	300	21	170	
ESD 10 / 350	20	350	21	195	
ESD 10 / 400	20	400	21	220	
ESD 10 / 500	20	500	21	270	

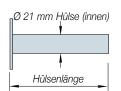

ED Dorne sind auf Anfrage auch in anderen Materialqualitäten lieferbar.

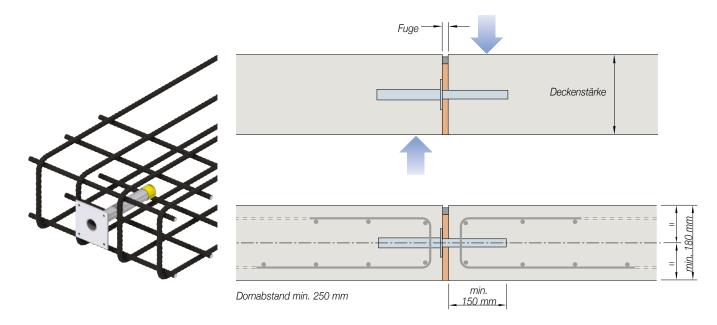
Dorn 1.4362 / 1.4462 Hülse 1.4301 ESDQ 10 Länge Länge Тур Ø Ø mm mm mm mm ESDQ 10 / 300 20 300 21 170 ESDQ 10 / 350 350 21 195 20 ESDQ 10 / 400 20 400 21 220 ESDQ 10 / 500 21 270

ED Dorn


ED Hülse


ESD/ESDQ Dorn




ESD Hülse

ESDQ Hülse

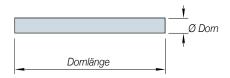
Ancon ED/ESD/ESDQ 15

Traglasten und Bewehrung

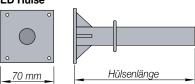
ED/ESD/ESDQ 15	V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)							(kN) Be				
Fuge (mm)	180	200	220	240	260	280	180	200	220	240	260	280
0	29	32	32	32	32	32	33	39	39	39	39	39
10	29	32	32	32	32	32	33	36	36	36	36	36
20	29	32	32	32	32	32	32	32	32	32	32	32
30	28	28	28	28	28	28	28	28	28	28	28	28
40	25	25	25	25	25	25	25	25	25	25	25	25
50	22	22	22	22	22	22	22	22	22	22	22	22

ESD 15 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)								
Hülse	180	200	220	240	260	280				
Bügel- beweh- rung	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø				
Teilung*	60mm	70mm	90mm	100mm	120mm	130mm				
Längs- beweh- rung**	2-10Ø	2-10Ø	2-10Ø	2-10Ø	2-10Ø	2-10Ø				

^{*} Jeweils zur Hälfte links und rechts des Einbauteiles anordnen ** Ober- und unterhalb des Einbauteiles anordnen

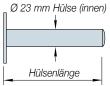

Abmessungen

ED 15		orn / 1.4462	Hülse Plastik		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ED 15 / 300	22	300	23	170	
ED 15 / 350	22	350	23	195	
ED 15 / 400	22	400	23	220	
ED 15 / 500	22	500	23	270	

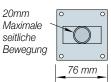

ESD 15		orn / 1.4462	1.4301		
Тур	Ø Länge mm mm		Ø mm	Länge mm	
ESD 15 / 300	22	300	23	170	
ESD 15 / 350	22	350	23	195	
ESD 15 / 400	22	400	23	220	
ESD 15 / 500	22	500	23	270	

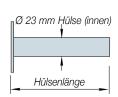
ESDQ 15		orn / 1.4462		ilse I301
Тур	Ø mm	Länge mm	Ø mm	Länge mm
ESDQ 15 / 300	22	300	23	170
ESDQ 15 / 350	22	350	23	195
ESDQ 15 / 400	22	400	23	220
ESDQ 15 / 500	22	500	23	270

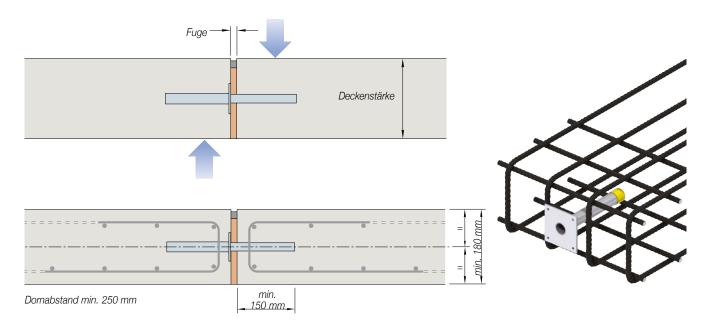
ED Dorn



ESD/ESDQ Dorn


ESD Hülse




ESDQ Hülse 20mm

seitliche

ED Dorne sind auf Anfrage auch in anderen Materialqualitäten lieferbar.

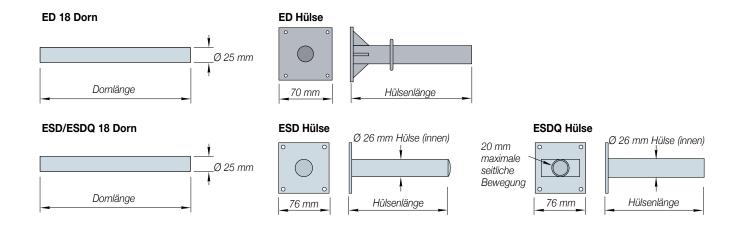
Ancon ED/ESD/ESDQ 18

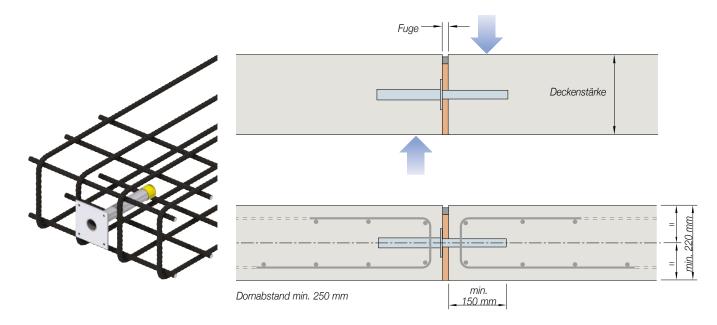
Traglasten und Bewehrung

ED/ESD/ESDQ 18	nu ()									eton C3 ärke (m		
Fuge (mm)	180	200	220	240	260	280	180	200	220	240	260	280
0	29	35	41	48	49	49	33	40	46	48	49	49
10	29	35	41	44	44	44	33	40	44	44	44	44
20	29	35	39	39	39	39	33	39	39	39	39	39
30	29	35	35	35	35	35	33	35	35	35	35	35
40	29	31	31	31	31	31	31	31	31	31	31	31
50	28	28	28	28	28	28	28	28	28	28	28	28

ESD 18 Stk. pro Dorn/ Hülse	Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm) 180 200 220 240 260 280							
Bügel- beweh- rung*	2-12Ø	2-12Ø	2-12Ø	2-12Ø	2-12Ø	2-12Ø		
Längs- beweh- rung**	2-12Ø	2-12Ø	2-12Ø	2-12Ø	2-12Ø	2-12Ø		

^{*} Jeweils zur Hälfte links und rechts des Einbauteiles anordnen ** Ober- und unterhalb des Einbauteiles anordnen


Abmessungen


ED 18	Dorn 1.4362 / 1.4462		Hülse Plastik		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ED 18 / 300	25	300	26	170	
ED 18 / 350	25	350	26	195	
ED 18 / 400	25	400	26	220	
ED 18 / 500	25	500	26	270	

ESD 18		orn / 1.4462	Hülse 1.4301		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ESD 18 / 300	25	300	26	170	
ESD 18 / 350	25	350	26	195	
ESD 18 / 400	25	400	26	220	
ESD 18 / 500	25	500	26	270	

ESDQ 18			orn / 1.4462	Hülse 1.4301		
	Тур	Ø mm	Länge mm	Ø mm	Länge mm	
	ESDQ 18 / 300	25	300	26	170	
	ESDQ 18 / 350	25	350	26	195	
	ESDQ 18 / 400	25	400	26	220	
	ESDQ 18 / 500	25	500	26	270	

ED Dome sind auf Anfrage auch in anderen Materialqualitäten lieferbar.

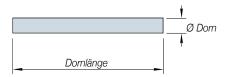
Ancon ED/ESD/ESDQ 20

Traglasten und Bewehrung

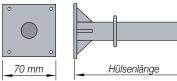
ED/ESD/ESDQ 20	V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)				V _{Rd} (kN) Beton C30/37 Deckenstärke (mm)							
Fuge (mm)	220	240	260	280	300	350	220	240	260	280	300	350
0	47	55	60	60	60	60	54	62	71	72	72	72
10	47	55	60	60	60	60	54	62	70	70	70	70
20	47	55	60	60	60	60	54	62	64	64	64	64
30	47	55	58	58	58	58	54	58	58	58	58	58
40	47	53	53	53	53	53	53	53	53	53	53	53
50	47	48	48	48	48	48	48	48	48	48	48	48

ESD 20 Stk. pro Dorn/	Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)								
Hülse	220	240	260	280	300	350			
Bügel- beweh- rung	4-10Ø	6-10Ø	6-10Ø	6-10Ø	6-10Ø	6-10Ø			
Teilung*	90mm	50mm	60mm	70mm	70mm	90mm			
Längs- beweh- rung**	2-10Ø	2-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø			

^{*} Jeweils zur Hälfte links und rechts des Einbauteiles anordnen ** Ober- und unterhalb des Einbauteiles anordnen


Abmessungen

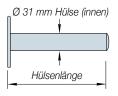
ED 20		orn / 1.4462	Hülse Plastik		
Тур	Ø mm	Länge mm	Ø mm	Länge mm	
ED 20 / 300	30	300	31	170	
ED 20 / 350	30	350	31	195	
ED 20 / 400	30	400	31	210	
FD 20 / 500	30	500	31	270	


ESD 20		orn / 1.4462	1.4301				
Тур	Ø mm	Länge mm	Ø mm	Länge mm			
ESD 20 / 300	30	300	31	170			
ESD 20 / 350	30	350	31	195			
ESD 20 / 400	30	400	31	210			
ESD 20 / 500	30	500	31	270			

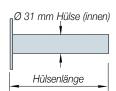
E3DQ 20		/ 1.4462	1.4301			
Тур	Ø mm	Länge mm	Ø mm	Länge mm		
ESDQ 20 / 300	30	300	31	170		
ESDQ 20 / 350	30	350	31	195		
ESDQ 20 / 400	30	400	31	210		
ESDQ 20 / 500	30	500	31	270		

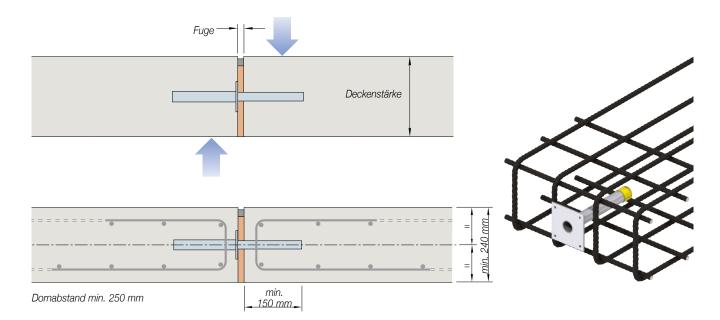
ED Dorn

ED Hülse



ESD/ESDQ Dorn


ESD Hülse



41mm Maximale

ED Dorne sind auf Anfrage auch in anderen Materialqualitäten lieferbar.

ANCON ED/ESD/ESDQ 25

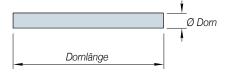
Traglasten und Bewehrung

ED/ESD/ESDQ 25				eton C2 ärke (m			V _{Rd} (kN) Beton C30 Deckenstärke (mi							
Fuge (mm)	240	260	280	300	350	400	240	260	280	300	350	400		
0	57	65	74	82	82	82	64	74	83	83	83	83		
10	57	65	74	75	75	75	64	74	75	75	75	75		
20	57	65	68	68	68	68	64	68	68	68	68	68		
30	57	61	61	61	61	61	61	61	61	61	61	61		
40	56	56	56	56	56	56	56	56	56	56	56	56		
50	51	51	51	51	51	51	51	51	51	51	51	51		

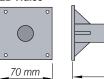
ESD 25 Stk. pro Dorn/	Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)										
Hülse	240	260	280	300	350	400					
Bügel- beweh- rung	6-10Ø	6-10Ø	6-10Ø	6-10Ø	6-10Ø	6-10Ø					
Teilung*	50mm	60mm	70mm	70mm	90mm	110mm					
Längs- beweh- rung**	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø					

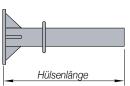
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen ** Ober- und unterhalb des Einbauteiles anordnen

Abmessungen

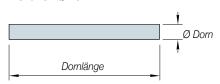

ED 25		orn / 1.4462		ülse astik
Тур	Ø mm	Länge mm	Ø mm	Länge mm
ED 25 / 350	35	350	36	195
ED 25 / 400	35	400	36	220
ED 25 / 470	35	470	36	270

	ESD 25		orn / 1.4462	Hülse 1.4301			
_	Тур	Ø mm	Länge mm	Ø mm	Länge mm		
	ESD 25 / 350	35	350	36	195		
	ESD 25 / 400	35	400	36	220		
	ESD 25 / 470	35	470	36	260		

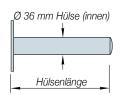

ED Dorne sind auf Anfrage auch in anderen Materialqualitäten lieferbar.


	ESDQ 25		orn / 1.4462	Hülse 1.4301			
	Тур	Ø mm	Länge mm	Ø mm	Länge mm		
	ESDQ 25 / 350	35	350	36	195		
	ESDQ 25 / 400	35	400	36	220		
ĺ	ESDQ 25 / 470	35	470	36	260		

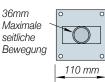
ED Dorn

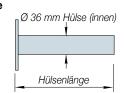


ED Hülse

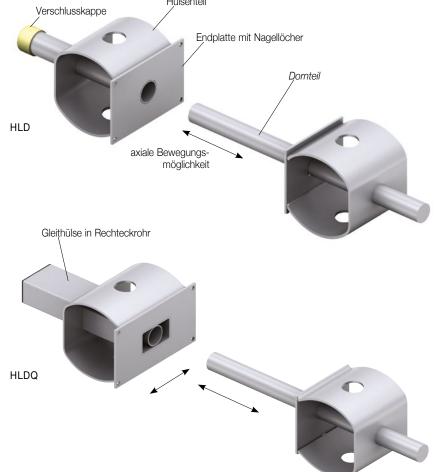


ESD/ESDQ Dorn




ESD Hülse

ESDQ Hülse



Der Ancon HLD ist ein hoch belastbarer Querkraftdorn. Der Dornteil kann sich im Hülsenteil in Dornlängsachse bewegen und damit Bauwerksbewegungen aufnehmen. Dieser Querkraftdorn wird in sieben Größen angeboten und kann Lasten zwischen 24 kN und 533 kN übertragen.

Die Lasttabellen auf den Seiten 17-23 beinhalten auch die entsprechenden erforderlichen Deckenstärken ab 160 mm und Fugenöffnungen bis zu 60 mm. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301.

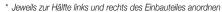
Ancon HLDQ

Der Dorntyp HLDQ arbeitet mit demselben Dornteil wie auch der HLD, jedoch die zylindrische Hülse ist zusätzlich noch in einem Rechteckrohr gelagert. Diese Hülse ermöglicht zusätzlich zu der axialen Bewegung des Dornes auch eine horizontale Verschiebung des Dornes in Dehnfugenlängsrichtung. Verfügbare Dimensionen, Belastungsdaten und Materialien entsprechen dem Typ HLD.

Ancon HLD 18 / HLDQ 18

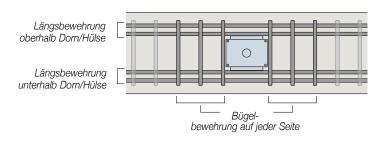
Traglasten

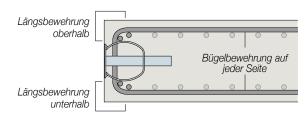
HLD 18 HLDQ 18				eton C2: ärke (m					(kN) Be eckenst			
Fuge (mm)	160	180	200	220	240	260	160	180	200	220	240	260
10	42	53	56	60	63	66	51	64	68	72	75	75
20	38	49	52	55	58	61	46	58	61	61	61	61
30	35	44	46	46	46	46	42	46	46	46	46	46
40	35	35	35	35	35	35	35	35	35	35	35	35
50	28	28	28	28	28	28	28	28	28	28	28	28
60	24	24	24	24	24	24	24	24	24	24	24	24


Bewehrungsangaben

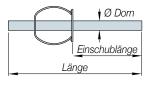
Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.

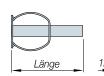
Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung

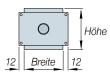

	•											
HLD 18 Stk. pro Dorn/	Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)											
Hülse	160	180	200	220	240	260						
Bügel- beweh- rung	4-10Ø	4-12Ø	4-12Ø	4-12Ø	4-12Ø	4-12Ø						
Teilung*	80mm	80mm	100mm	100mm	120mm	120mm						
Längs- beweh- rung**	2-10Ø	2-10Ø	2-10Ø	2-10Ø	4-10Ø	4-10Ø						

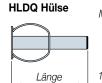
** Ober- und unterhalb des Einbauteiles anordnen

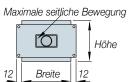



Abmessungen

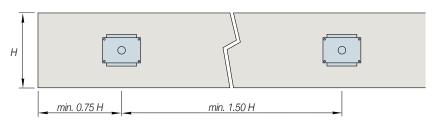
HLD 18 Dorn (mm)					HLD Hülse (mm)			HLDQ Hülse (mm)				
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 18	270	18	150	75	70	155	75	70	170	75	100	+/-12.5mm


HLD Dorn





HLD Hülse



Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

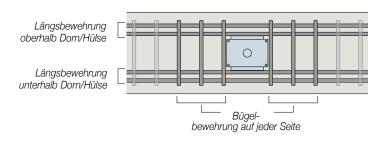
Ancon HLD 22 / HLDQ 22

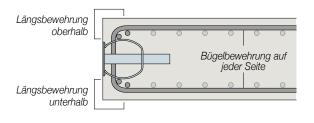
Traglasten

HLD 22 V _{Rd} (kN) Beton C25/30 HLDQ 22 Deckenstärke (mm)							(kN) Be					
Fuge (mm)	180	200	220	240	260	280	180	200	220	240	260	280
10	73	90	97	104	112	115	89	105	117	118	118	118
20	69	84	91	98	99	99	83	101	101	101	101	101
30	63	77	81	81	81	81	75	81	81	81	81	81
40	61	63	63	63	63	63	63	63	63	63	63	63
50	51	51	51	51	51	51	51	51	51	51	51	51
60	43	43	43	43	43	43	43	43	43	43	43	43

Bewehrungsangaben

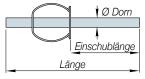
Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.


Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung

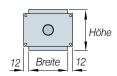
HLD 22 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)											
Hülse	180	200	220	240	260	280							
Bügel- beweh- rung Teilung	6-12Ø	6-12Ø			6-12Ø 90mm								
reliurig	OUITIIII	OUITIIII	7011111	OUIIIIII	90111111	90111111							
Längs- beweh- rung	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø							

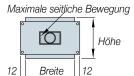
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen



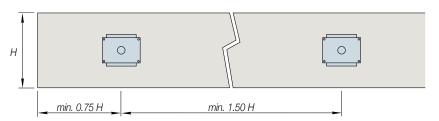
Abmessungen

HLD 22			Dorn (mm)			Н	ILD Hülse (mı	m)	HLDQ Hülse (mm)			
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 22	310	22	160	95	90	165	95	90	175	95	114	+/-10.5mm


HLD Dorn



HLD Hülse



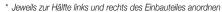
Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

Ancon HLD 24 / HLDQ 24

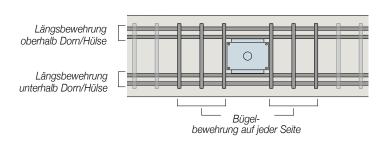
Traglasten

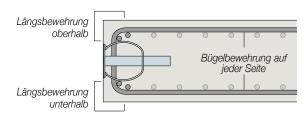
HLD 24 HLDQ 24			(kN) Be eckenst				V _{Rd} (kN) Beton C30/37 Deckenstärke (mm)					
Fuge (mm)	200	220	240	260	280	300	200	220	240	260	280	300
10	88	105	124	133	134	134	107	128	138	138	138	138
20	84	100	118	118	118	118	101	120	120	120	120	120
30	78	94	101	101	101	101	94	102	102	102	102	102
40	72	82	82	82	82	82	82	82	82	82	82	82
50	66	66	66	66	66	66	66	66	66	66	66	66
60	56	56	56	56	56	56	56	56	56	56	56	56


Bewehrungsangaben

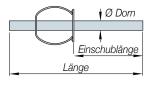
Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung

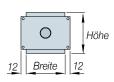

HLD 24 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)													
Hülse	200	220	240	260	280	30 0									
Bügel- beweh- rung	6-12Ø	8-12Ø	8-12Ø	8-12Ø	8-12Ø	8-12Ø									
Teilung*	60mm	60mm	70mm	80mm	80mm	90mm									
Längs- beweh- rung**	4-100	4-10Ø	4-120	4-12Ø	4-120	4-120									

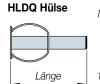
** Ober- und unterhalb des Einbauteiles anordnen

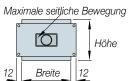


Abmessungen

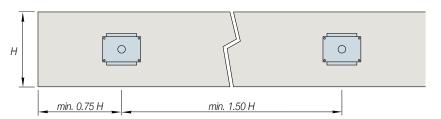
Н	HLD 24 Dorn (mm)					F	HLD Hülse (m	m)	HLDQ Hülse (mm)				
	Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
Н	ILD 24	330	24	170	110	100	175	110	100	180	110	122	+/-11.5mm


HLD Dorn





HLD Hülse



Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

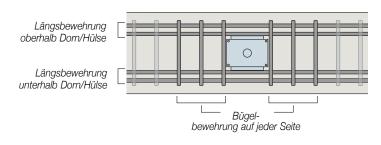
Ancon HLD 30 / HLDQ 30

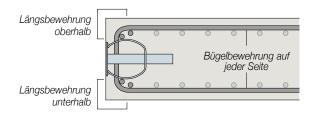
Traglasten

HLD 30 HLDQ 30				eton C2: ärke (m											
Fuge (mm)	240	260	280	300	320	340	240	260	280	300	320	340			
10	151	163	177	190	203	203	171	185	200	209	209	209			
20	151	163	177	183	183	183	171	185	186	186	186	186			
30	145	161	161	161	161	161	162	162	162	162	162	162			
40	134	136	136	136	136	136	136	136	136	136	136	136			
50	111	111	111	111	111	111	111	111	111	111	111	111			
60	94	94	94	94	94	94	94	94	94	94	94	94			

Bewehrungsangaben

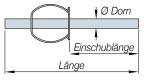
Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.


Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung

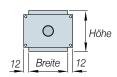
HLD 30 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)												
Hülse	240	260	280	300	320	340								
Bügel- beweh- rung	10-12Ø													
Teilung*	50mm	50mm	60mm	60mm	60mm	60mm								
Längs- beweh- rung**	4-12Ø	4-12Ø	4-14Ø	4-14Ø	4-14Ø	4-14Ø								

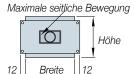
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen



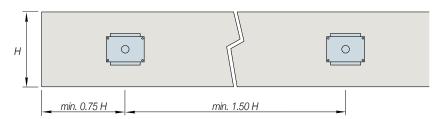
Abmessungen

HLD 30	D 30 Dorn (mm)					H	HLD Hülse (m	m)	HLDQ Hülse (mm)			
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 30	365	30	185	140	115	190	140	115	210	140	161	+/-20.5mm


HLD Dorn



HLD Hülse



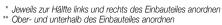
Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

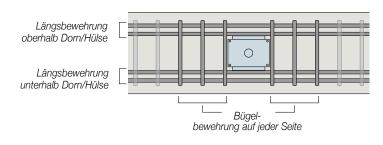
Ancon HLD 35 / HLDQ 35

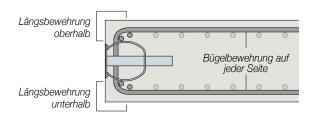
Traglasten

HLD 35 HLDQ 35			(kN) Be							eton C3 ärke (m		
Fuge (mm)	300	320	340	360	380	400	300	320	340	360	380	400
10	254	272	285	285	285	285	288	293	293	293	293	293
20	254	260	260	260	260	260	265	265	265	265	265	265
30	234	234	234	234	234	234	236	236	236	236	236	236
40	204	204	204	204	204	204	205	205	205	205	205	205
50	171	171	171	171	171	171	171	171	171	171	171	171
60	144	144	144	144	144	144	144	144	144	144	144	144

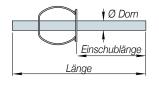

Bewehrungsangaben

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.

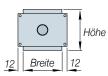

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

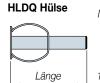

Bewehrung

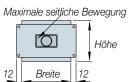
HLD 35 Stk. pro Dorn/		pı	o Hülse	Bewehr en-/Dorr stärke (i		00
Hülse	300	320	340	360	380	400
Bügel- beweh- rung Teilung*	12-14Ø 50mm	12-14Ø			10-14Ø 80mm	
Längs- beweh- rung**	6-14Ø	6-14Ø				

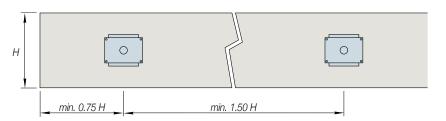


Abmessungen


HLD 35	HLD 35 Dorn (mm)					F	ILD Hülse (m	m)	HLDQ Hülse (mm)			
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 35	420	35	210	160	132	215	160	132	235	160	172	+/-16.5mm


HLD Dorn





Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

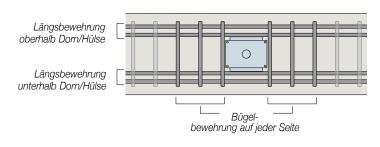
Ancon HLD 42 / HLDQ 42

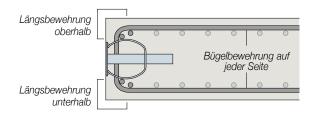
Traglasten

HLD 42 HLDQ 42			(kN) Be						(kN) Be			
Fuge (mm)	350	400	450	500	550	600	350	400	450	500	550	600
10	329	368	368	368	368	368	368	368	368	368	368	368
20	328	334	334	334	334	334	334	334	334	334	334	334
30	300	300	300	300	300	300	300	300	300	300	300	300
40	266	266	266	266	266	266	266	266	266	266	266	266
50	232	232	232	232	232	232	232	232	232	232	232	232
60	199	199	199	199	199	199	199	199	199	199	199	199

Bewehrungsangaben

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.


Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

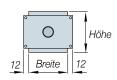

Bewehrung

HLD 42 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm)												
Hülse	350	400	450	500	550	600								
Bügel- beweh- rung Teilung*	12-16Ø 60mm			10-16Ø 100mm										
Längs- beweh- rung**		6-14Ø												

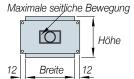
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen

Abmessungen

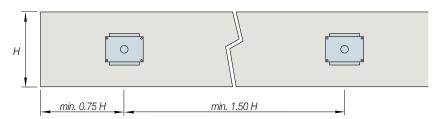
HLD 42			Dorn (mm)			Н	ILD Hülse (mı	m)	HLDQ Hülse (mm)			
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 42	470	42	230	180	175	245	180	175	245	180	203	+/-23.5mm


HLD Dorn | Ø Dorn | Einschublänge

Länge



HLD Hülse



Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

Ancon HLD 52 / HLDQ 52

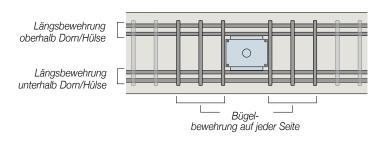
Traglasten

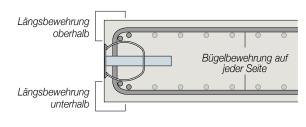
HLD 52 HLDQ 52			(kN) Be eckenst						(kN) Be eckenst			
Fuge (mm)	400	450	500	550	600	650	400	450	500	550	600	650
10	443	496	514	514	514	514	502	533	533	533	533	533
20	443	484	484	484	484	484	499	499	499	499	499	499
30	443	453	453	453	453	453	464	464	464	464	464	464
40	421	421	421	421	421	421	429	429	429	429	429	429
50	389	389	389	389	389	389	394	394	394	394	394	394
60	357	357	357	357	357	357	359	359	359	359	359	359

Bewehrungsangaben

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon HLD und HLDQ die vollen Lasten übertragen.

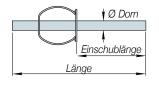
Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung


HLD 52 Stk. pro Dorn/		pı	lerliche o Hülse Deckens	n-/Dorr	seite	00
Hülse	400	450	500	550	600	650
Bügel- beweh- rung		10-20Ø				
_Teilung*	80mm	90mm	100mm	110mm	120mm	130mm
Längs- beweh- rung**	8-14Ø	8-16Ø	8-16Ø	8-16Ø	8-16Ø	8-16Ø

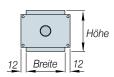
* Jeweils zur Hälfte links und rechts des Einbauteiles anordnen

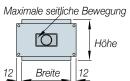
** Ober- und unterhalb des Einbauteiles anordnen



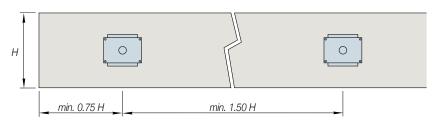
Abmessungen

HLD 52			Dorn (mm)			H	ILD Hülse (mı	m)	HLDQ Hülse (mm)			
Тур	Länge	Ø	Einschubl.	Höhe	Breite	Länge	Höhe	Breite	Länge	Höhe	Breite	seitl. Bewegung
HLD 52	570	52	280	220	210	295	220	210	295	220	244	+/-19.5mm


HLD Dorn



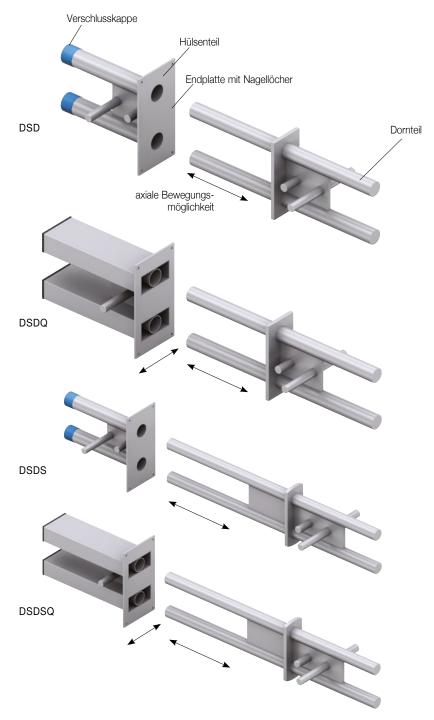
HLD Hülse



Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

Ancon DSD


Der Ancon DSD ist ein hoch belastbarer Querkraftdorn. Der Dornteil bestehend aus zwei Dornen kann sich im Hülsenteil in Dornlängsachse bewegen und damit Bauwerksbewegungen aufnehmen. Dieser Querkraftdom wird in sieben Größen angeboten und kann Lasten zwischen 47 kN und 952 kN übertragen. Die Lasttabellen auf den Seiten 25-33 beinhalten auch die entsprechenden erforderlichen Deckenstärken ab 200 mm und Fugenöffnungen bis zu 60 mm. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301.

Ancon DSDQ

Der Dorntyp DSDQ arbeitet mit demselben Dornteil wie auch der DSD, jedoch die zylindrischen Hülsen sind zusätzlich noch in Rechteckrohren gelagert. Diese Hülse ermöglicht zusätzlich zu der axialen Bewegung des Dornes auch eine horizontale Verschiebung des Dornes in Dehnfugenlängsrichtung. Verfügbare Dimensionen, Belastungsdaten und Materialien entsprechen dem Typ DSD.

Ancon DSDS

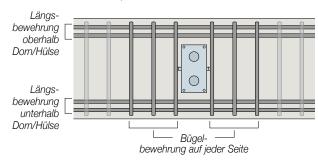
Der Dorntyp DSDS ist grundsätzlich wie der normale DSD konzipiert. Der Dorn wurde jedoch durch eine im Bereich der Fuge zusätzlich eingeschweißte Stahlplatte für die Übertragung von Querkräften über große Fugen hinweg optimiert. Die Ausführung der Dornteile richtet sich nach der Fugengröße und wird als Standard für die Fugenöffnungen 6 cm, 8 cm und 10 cm angeboten. Auch dieser Dornteil kann sich im DSD Hülsenteil axial und im DSDQ Hülsenteil axial und horizontal bewegen und somit Bauwerksbewegungen aufnehmen. Dieser Dorn wird als Standard in zwei Größen angeboten. Der Dorn ist aus Duplex (1.4462) gefertigt, alle anderen Komponenten aus 1.4301. Bei Bedarf sind auch größere Doppelschubdorne in der Ausführung DSDS für große Fugen erhältlich.

Ancon DSD 65 / DSDQ 65

Traglasten

DSD 65 DSDQ 65				eton C2: ärke (m					(kN) Be			
Fuge (mm)	200	220	240	260	280	300	200	220	240	260	280	300
10	62	64	69	76	85	93	71	73	78	87	96	106
20	62	64	69	76	85	93	71	73	78	87	96	106
30	62	64	69	76	85	87	71	73	78	87	87	87
40	62	64	68	68	68	68	68	68	68	68	68	68
50	55	55	55	55	55	55	55	55	55	55	55	55
60	47	47	47	47	47	-	47	47	47	47	47	-

Bewehrungsangaben

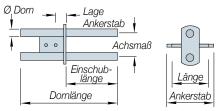

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.

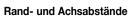
Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

Bewehrung

DSD 65 Stk. pro Dorn/		pro	Hülsen-	ewehrung /Dornseit irke (mm)	
Hülse	200	220	240	260	280
Bügel- beweh- rung	6-10Ø	6-10Ø	8-10Ø	8-10Ø	8-10Ø
Teilung*	60mm	65mm	50mm	50mm	60mm
Längs- beweh- rung**	4-10Ø	4-10Ø	4-10Ø	4-10Ø	4-10Ø

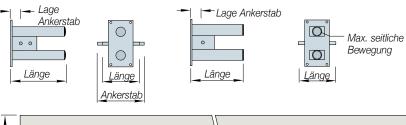
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen





Abmessungen

DSD 65			Dorn	(mm)				SD Hülse (mi	m)		DSDQ H	ilse (mm)	
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD 65	300	20	65	150	31	50/130	155	28	50/130	175	33	70	+/-10


DSD/DSDQ Dorn

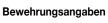
Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

DSD Hülse DSDQ Hülse

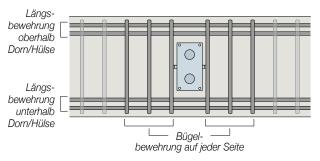
Ancon DSD 75 / DSDQ 75

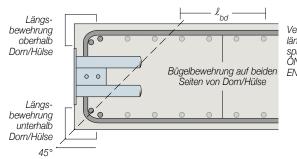
Traglasten

DSD 75 DSDQ 75				eton C2: ärke (m					(kN) Be			
Fuge (mm)	240	260	280	300	320	340	240	260	280	300	320	340
10	86	89	95	104	114	123	98	101	107	118	129	140
20	86	89	95	104	114	123	98	101	107	118	129	140
30	86	89	95	104	114	116	98	101	107	116	116	116
40	86	89	90	90	90	90	90	90	90	90	90	90
50	74	74	74	74	74	74	74	74	74	74	74	74
60	62	62	62	62	62	62	62	62	62	62	62	62


Bewehrung

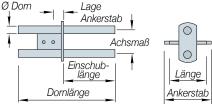
DSD 75 Stk. pro Dorn/		рі	lerliche o Hülse Deckens	n-/Dor		00
Hülse	240	260	280	300	320	340
Bügel- beweh- rung	6-12Ø	6-12Ø	6-12Ø	6-12Ø	6-12Ø	8-12Ø
Teilung*	70mm	80mm	80mm	90mm	100mm	70mm
Längs- beweh- rung**	4-100	4-10Ø	4-100	4-12Ø	4-12Ø	4-120


** Ober- und unterhalb des Einbauteiles anordnen



Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

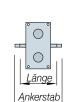


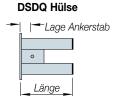
Verankerungslängen entsprechend ÖNORM EN 1992

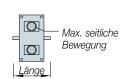
Abmessungen

DSD 75			Dorn	(mm)				SD Hülse (m	m)		DSDQ Hi	ilse (mm)	
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD 75	340	22	75	150	.33	50/150	155	31	50/150	175	33	120	+/-10

DSD/DSDQ DornDorn Lac

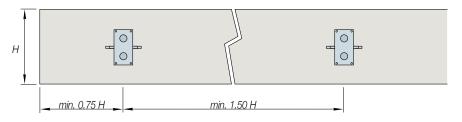





Lage Ankerstab

Länge

DSD Hülse



Rand- und Achsabstände

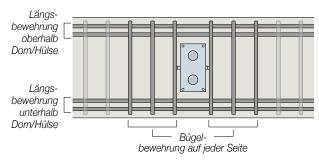
Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

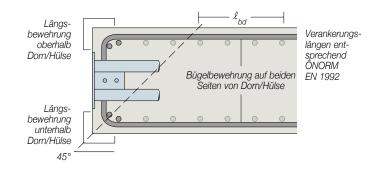
Ancon DSD 100 / DSDQ 100

Traglasten

DSD 100 DSDQ 100			(kN) Be						(kN) Be			
Fuge (mm)	320	340	360	380	400	420	320	340	360	380	400	420
10	161	167	171	183	196	209	183	189	193	208	222	237
20	158	163	167	179	191	204	179	184	189	203	217	231
30	154	159	163	175	187	199	174	180	185	198	204	204
40	150	155	159	161	161	161	161	161	161	161	161	161
50	134	134	134	134	134	134	134	134	134	134	134	134
60	114	114	114	114	114	114	114	114	114	114	114	114

Bewehrungsangaben

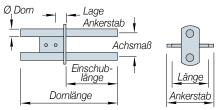

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.


Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

Bewehrung

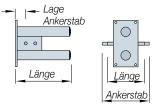
DSD 100 Stk. pro Dorn/		Erforderliche Bewehrung B500 Deckenstärke (mm)												
Hülse	320	340	360	380	400	420								
Bügel- beweh- rung	8-14Ø	8-14Ø				8-14Ø								
_Teilung*	70mm	70mm	80mm	80mm	90mm	90mm								
Längs- beweh- rung**	4-14Ø	4-14Ø	4-14Ø	4-14Ø	4-14Ø	4-14Ø								

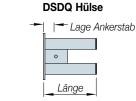
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen

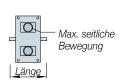


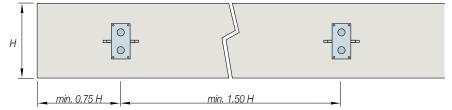
Abmessungen

DSD	100	Ū		Dorn	(mm)				OSD Hülse (m	m)		DSDQ H	ilse (mm)	
Тур	,	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD	100	400	30	100	210	34	80/170	210	36	80/170	240	54	170	+/-20


DSD/DSDQ Dorn




Rand- und Achsabstände


Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

DSD Hülse

Ancon DSD 130 / DSDQ 130

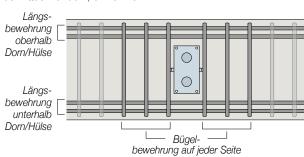
Traglasten

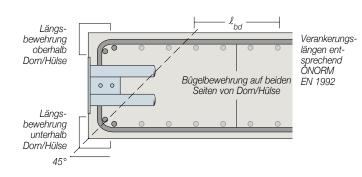
DSD 130 DSDQ 130			(kN) Be						(kN) Be			
Fuge (mm)	360	380	400	420	440	460	360	380	400	420	440	460
10	185	193	207	220	234	248	210	219	234	249	265	281
20	181	189	202	216	229	243	205	215	229	244	260	275
30	178	186	198	212	225	238	201	211	225	240	255	270
40	174	182	195	207	220	234	198	206	221	235	249	249
50	171	179	191	204	206	206	194	203	206	206	206	206
60	168	175	176	176	176	176	176	176	176	176	176	176

Bewehrungsangaben

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.

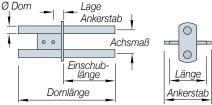
Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung


DSD 130 Stk. pro Dorn/		рі	lerliche o Hülse Deckens	n-/Dor		00
Hülse	360	380	400	420	440	460
Bügel- beweh- rung	8-14Ø	8-14Ø	8-14Ø	8-14Ø	10-14Ø	10-16Ø
Teilung*	80mm	85mm	90mm	90mm	75mm	100mm
Längs- beweh- rung**	6-12Ø	6-12Ø	4-140	4-140	6-14Ø	6-14Ø

* Jeweils zur Hälfte links und rechts des Einbauteiles anordnen

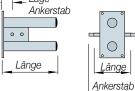
** Ober- und unterhalb des Einbauteiles anordnen

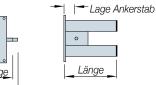


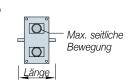
Abmessungen

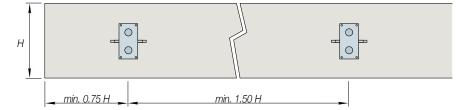
DSD 130			Dorn	(mm)				SD Hülse (m	m)		DSDQ Hi	ilse (mm)	
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD 130	470	35	105	260	.34	80/170	265	36	80/170	290	59	170	+/-18

DSD/DSDQ Dorn






Rand- und Achsabstände


Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{\min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

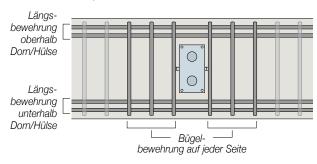
DSD Hülse DSDQ Hülse Lage

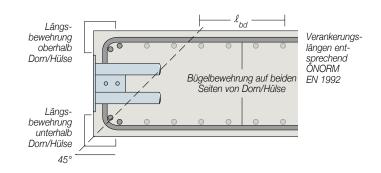
Ancon DSD 150 / DSDQ 150

Traglasten

DSD 150 DSDQ 150			(kN) Be						(kN) Be			
Fuge (mm)	450	500	550	600	700	800	450	500	550	600	700	800
10	281	308	340	380	465	486	318	349	385	431	527	583
20	276	303	334	374	457	477	313	343	378	424	518	553
30	271	298	328	368	450	451	307	337	372	417	451	451
40	267	293	323	359	359	359	302	332	359	359	359	359
50	262	288	297	297	297	297	297	297	297	297	297	297
60	254	254	254	254	254	254	254	254	254	254	254	254

Bewehrungsangaben

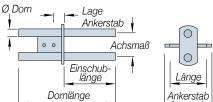

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.

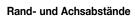

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

Bewehrung

DSD 150 Stk. pro Dorn/		pı	o Hülse	Bewehr en-/Dorr stärke (ı	seite	00
Hülse	450	500	550	600	700	800
Bügel- beweh- rung Teilung*		10-16Ø 85mm				
reliurig	TOOHIII	OUTHIN	90111111	TUUIIIII	TUUITIIII	HUIIIII
Längs- beweh- rung**	6-14Ø	6-14Ø	6-14Ø	8-14Ø	8-16Ø	8-16Ø

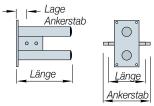
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen

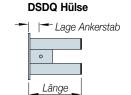


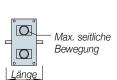


Abmessungen

DSD 150			Dorn	(mm)				OSD Hülse (m	m)		DSDQ H	ilse (mm)	
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD 150	550	42	120	270	54	80/210	275	39	80/210	305	54	170	+/-10


DSD/DSDQ Dorn





Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

DSD Hülse

Ancon DSD 400 / DSDQ 400

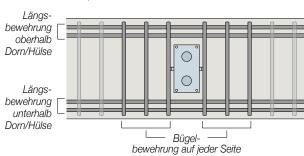
Traglasten

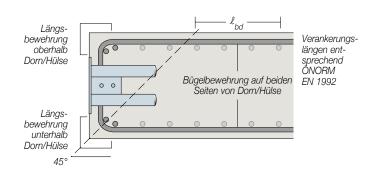
DSD 400 DSDQ 400			(kN) Be							eton C30 ärke (m		
Fuge (mm)	600	650	700	800	900	1000	600	650	700	800	900	1000
10	441	485	530	621	713	745	500	550	600	704	779	779
20	435	478	522	612	666	666	492	542	592	666	666	666
30	428	471	514	554	554	554	485	534	554	554	554	554
40	422	442	442	442	442	442	442	442	442	442	442	442
50	369	369	369	369	369	369	369	369	369	369	369	369
60	315	315	315	315	315	315	315	315	315	315	315	315

Bewehrungsangaben

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.

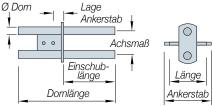
Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

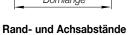

Bewehrung


DSD 400 Stk. pro Dorn/		pr	o Hülse	Bewehr en-/Dorr stärke (nseite	00
Hülse	600	650	700	800	900	1000
Bügel- beweh- rung	12-16Ø	12-16Ø	14-16Ø	14-16Ø	16-16Ø	16-16Ø
Teilung*	90mm	100mm	90mm	100mm	100mm	110mm
Längs- beweh- rung**	6-16Ø	8-16Ø	8-16Ø	10-16Ø	10-16Ø	12-16Ø

* Jeweils zur Hälfte links und rechts des Einbauteiles anordnen

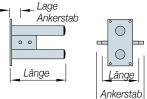
** Ober- und unterhalb des Einbauteiles anordnen

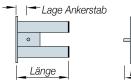


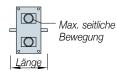


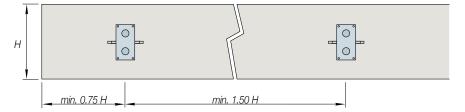
Abmessungen

DSD 400			Dorn	(mm)				SD Hülse (m	m)		DSDQ Hi	ilse (mm)	
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Max. seitl. Bewegung
DSD 400	660	52	160	330	70	130/300	335	70	130/300	355	64	300	+/-13


DSD/DSDQ Dorn






Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

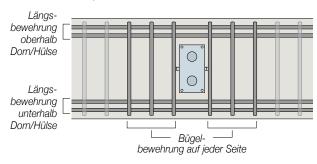
DSD Hülse DSDQ Hülse

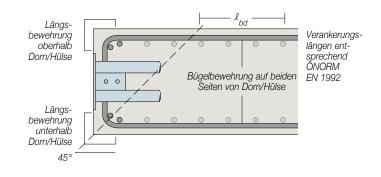
Ancon DSD 450 / DSDQ 450

Traglasten

DSD 450 DSDQ 450			(kN) Be							eton C3 ärke (m		
Fuge (mm)	600	650	700	800	900	1000	600	650	700	800	900	1000
10	485	515	561	654	748	840	550	584	636	742	848	952
20	485	515	561	654	748	840	550	584	636	742	848	952
30	485	515	561	654	748	840	550	584	636	742	848	941
40	485	515	561	654	748	811	550	584	636	742	811	811
50	485	515	561	654	685	685	550	584	636	685	685	685
60	485	515	561	587	587	587	550	584	587	587	587	587

Bewehrungsangaben

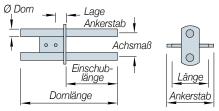

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSD und DSDQ die vollen Lasten übertragen.


Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

Bewehrung

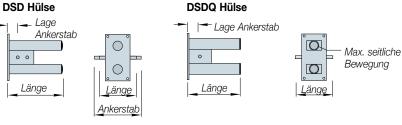
DSD 450 Stk. pro Dorn/		pr	o Hülse	Bewehr en-/Dorr stärke (i	seite	00
Hülse	600	650	700	800	900	1000
Bügel- beweh- rung		10-20Ø				
Teilung*	110mm	120mm	130mm	150mm	130mm	150mm
Längs- beweh- rung**	8-16Ø	8-16Ø	8-16Ø	10-16Ø	10-16Ø	12-16Ø

- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen



Abmessungen

DSD 450						DSD Hülse (mm)				DSDQ Hülse (mm)			
Тур	Länge	Ø Dorn	Achsmaß	Einschub- länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab		Max. seitl. Bewegung
DSD 450	690	65	180	360	80	130/300	370	80	130/300	400	89	300	+/-27


DSD/DSDQ Dorn

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{\min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

DSD Hülse

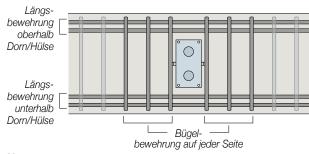
Ancon DSDS 30 / DSDSQ 30 - für große Fugen

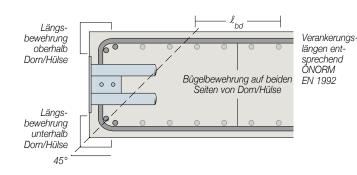
Traglasten

DSDS 30 DSDSQ 30	Fuge (mm)		V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)							(kN) Be			
Тур		180	200	220	240	260	280	180	200	220	240	260	280
DSDS 30-60	60	34	39	44	50	56	62	38	44	50	57	63	71
DSDS 30-80	80	31	36	41	46	52	58	35	41	46	52	59	65
DSDS 30-100	100	28	33	37	42	47	53	32	37	42	48	54	60

Bewehrungsangaben

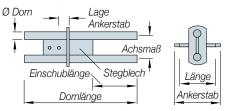
Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSDS und DSDSQ die vollen Lasten übertragen.

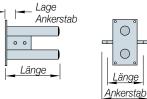

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.


Bewehrung

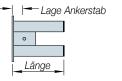
DSDS 30 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm) 180 200 220 240 260 280										
Hülse	180	200	220	240	260	280						
Bügel- beweh- rung		4-10Ø										
_Teilung*	100mm	100mm	120mm	120mm	140mm	140mm						
Längs- beweh- rung**	2-10Ø	2-10Ø	2-10Ø	2-10Ø	4-10Ø	4-10Ø						

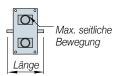
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen

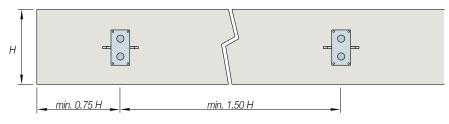



Abmessungen

DSDS 30		Dorn (mm)						DSDS Hülse (mm)			DSDSQ Hülse (mm)			
Тур	Länge	Ø Dorn	Achs- maß	Einschub- länge	Lage Anker- stab	Länge Anker- stab	Stegblech in Fuge	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Maximale seitl. Bewegung
DSDS 30-60	320	16	48	130	31	50/110	50x32x5	120	28	50/110	140	33	70	26
DSDS 30-80	340	16	48	130	31	50/110	70x32x5	120	28	50/110	140	33	70	26
DSDS 30-100	360	16	48	130	31	50/110	90x32x5	120	28	50/110	140	33	70	26


DSD/DSDQ Dorn




DSDQ Hülse

Rand- und Achsabstände

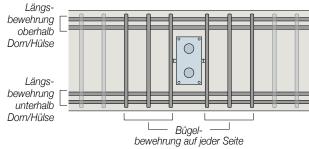
Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x H_{min} verwendet werden wobei H_{min} dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

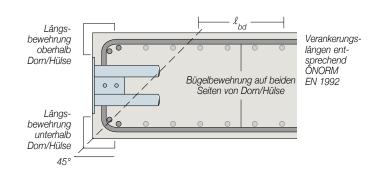
Ancon DSDS 50 / DSDSQ 50 - für große Fugen

Traglasten

DSDS 50 DSDSQ 50	Fuge (mm)		V _{Rd} (kN) Beton C25/30 Deckenstärke (mm)							(kN) Be			
Тур		180	200	220	240	260	280	180	200	220	240	260	280
DSDS 50-60	60	41	41	46	52	59	65	46	46	53	59	66	74
DSDS 50-80	80	37	37	42	48	53	59	42	42	48	54	60	67
DSDS 50-100	100	35	35	40	45	50	56	39	39	45	51	57	63

Bewehrungsangaben

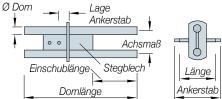

Die örtliche Bewehrung im Bereich der Querkraftdorne ist erforderlich um den Kraftfluss zwischen dem Betonbauteil und dem Querkraftdorn zu garantieren. Nur bei korrekter Planung nach den jeweils gültigen Normen und den nebenstehenden Bewehrungs-Empfehlungen kann der Ancon DSDS und DSDSQ die vollen Lasten übertragen.

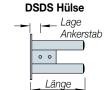

Der nebenstehenden Tabelle können sie die erforderlichen Dimensionen und Abstände der Hauptbewehrung, zusammen mit den Angaben der Bewehrungsstäbe über und unter dem Querkraftdorn, entnehmen.

Bewehrung

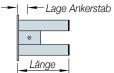
DSDS 50 Stk. pro Dorn/		Erforderliche Bewehrung B500 pro Hülsen-/Dornseite Deckenstärke (mm) 180 200 220 240 260 280										
Hülse	180	200	220	240	260	28 0						
Bügel- beweh- rung		4-10Ø										
Teilung*	100mm	100mm	100mm	120mm	140mm	150mm						
Längs- beweh- rung**	2-10Ø	2-10Ø	2-10Ø	4-10Ø	4-10Ø	4-10Ø						

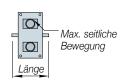
- * Jeweils zur Hälfte links und rechts des Einbauteiles anordnen
- ** Ober- und unterhalb des Einbauteiles anordnen

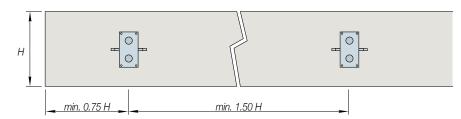




Abmessungen


DSDS 50		Dorn (mm)						DSDS Hülse (mm)			DSDSQ Hülse (mm)			
Тур	Länge	Ø Dorn	Achs- maß	Einschub- länge	Lage Anker- stab	Länge Anker- stab	Stegblech in Fuge	Länge	Lage Ankerstab	Länge Ankerstab	Länge	Lage Ankerstab	Länge Ankerstab	Maximale seitl. Bewegung
DSDS 50-60	330	18	50	130	31	50/130	50x32x8	135	28	50/130	160	33	70	25
DSDS 50-80	350	18	50	130	31	50/130	70x32x8	135	28	50/130	160	33	70	25
DSDS 50-100	370	18	50	130	31	50/130	90x32x8	135	28	50/130	160	33	70	25

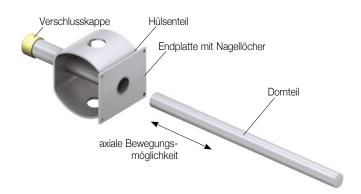




DSDSQ Hülse

Rand- und Achsabstände

Die minimalen Rand- und Achsabstände für alle Ancon Querkraftdorne wird durch die Deckenstärke definiert wie in nebenstehender Skizze dargestellt. Als absoluter Mindestabstand kann 1,5 x $H_{\rm min}$ verwendet werden wobei $H_{\rm min}$ dabei für die Mindestdeckenstärke der verwendeten Dorntype steht.

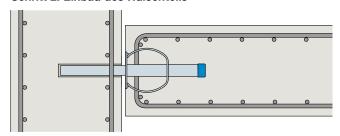


Ancon E-HLD / E-HLDQ

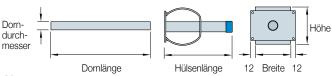
Der Ancon E-HLD Querkraftdorn verbindet neue Stahlbetondecken mit bereits bestehenden Betonwänden. Der Dorn wurde speziell für Decken entwickelt die nachträglich an Schlitzwände oder Bohrpfahlwände angeschlossen werden sollen, wie es bei Tiefbau-Projekten üblich ist.

Der E-HLD besteht aus einem Edelstahl-Dorn und einer hochbelastbaren Edelstahl-Hülse, und ist in sieben Standardgrößen verfügbar. Bei einer minimalen Deckenstärke von 160 mm können Lasten über Fugen bis zu 60 mm übertragen werden. Der Einbau des Dornes erfolgt mit Hochleistungs-Injektionsmörtel, der eine feste Verbindung zwischen Dorn und Beton sicherstellt. Sollten horizontale Bewegungen erforderlich werden können selbstverständlich auch die querbeweglichen HLD-Q verwendet werden.

Einbau


Schritt 1: Der Dornteil wird mit Hilfe des Spezial-Klebers in die Wand geklebt.

Das Bohrloch sollte nicht mehr als 5 mm größer als der Dorndurchmesser gebohrt werden. Die Bohrlochtiefe entnehmen Sie bitte der untenstehenden Tabelle. Nach dem Reinigen (Ausblasen) des Bohrloches wird Hochleistungs-Injektionsmörtel in das Bohrloch injiziert und der Dorn eingebaut.

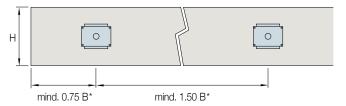

Dorndurchmesser (mm)	18	22	24	30	35	42	52
Tiefe A (mm)	130	155	170	180	205	240	290
Ca. Dornanzahl pro Kleber-Kartusche	16	10	9	6	4	3	2

Schritt 2: Einbau des Hülsenteils

Wenn der Kleber seine volle Festigkeit erreicht hat kann der Hülsenteil auf das herausstehende Ende des Dornes geschoben werden. Dabei ist auf die korrekte Lage der Hülse (siehe Schnitt) zu achten. Danach kann die erforderliche Decken-Bewehrung entsprechend der vorgeschriebenen Betonüberdeckung eingebaut werden, und nach einer letzten Lagekontrolle von Hülsenteil und Bewehrung, der Beton eingebracht werden.

*Bei Anwendungen wo sich die Fuge auf Baulebensdauer bewegen können soll, muss sichergestellt werden, dass alle Dorne achsparallel eingebaut werden.

Abmessungen


	Dornt	teil		Hülsenteil	
Dorntype	Durchmesser	Länge	Länge	Höhe	Breite
E-HLD 18	18	270	155	75	70
E-HLD 22	22	300	165	95	90
E-HLD 24	24	330	175	110	100
E-HLD 30	30	350	190	140	115
E-HLD 35	35	400	215	160	132
E-HLD 42	42	470	245	180	175
E-HLD 52	52	570	295	220	210

Traglasten

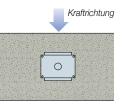
Minimale Deckenst.		V _{Rd} Designlasten (kN) bei verschiedenen Fugengrößen (mm) und Betongüte C25/30								
(mm) B	Dorntype	10	20	30 ′	40	50	60			
160	E-HLD 18	41.8	36.8	30.1	25.0	21.4	18.7			
180	E-HLD 22	69.6	59.2	50.5	42.6	36.8	32.4			
200	E-HLD 24	83.1	71.7	62.2	53.6	46.5	41.1			
240	E-HLD 30	120.2	106.2	94.2	83.3	73.2	65.2			
300	E-HLD 35	165.7	148.6	133.8	120.4	107.3	96.3			
350	E-HLD 42	200.8	182.5	166.4	151.6	136.9	123.8			
400	E-HLD 52	302.3	280.0	260.1	242.2	225.9	210.8			

Erforderliche Rand- und Achsabstände

Die erforderlichen Rand- und Achsabstände richten sich nach den Abmessungen der anzuschließenden Decke.

^{*} Beim Dom Typ E-HLD wird der Tragwiderstand ausschliesslich für die minimale Deckenstärke (B) angegeben – im Gegensatz zu anderen Dorntypen, bei denen der Tragwiderstand für unterschiedliche Deckenstärken (H) ausgewiesen wird. Aus diesem Grund beziehen sich die minimalen Rand- und Zwischenabstände auf die minimale Deckenstärke (B).

Erforderliche Deckenbewehrung Schritt 2


Dorntype	Empfohle Ø8	ene Bügelbe Ø10	wehrung (E Ø12	erf. Anzahl a Ø14	uf jeder Hü Ø16	Isenseite) Ø20
E-HLD 18	3	2	2		-	-
E-HLD 22	-	3	3	2	_	-
E-HLD 24	-	-	3	2	2	-
E-HLD 30	-	-	4	3	3	-
E-HLD 35	-	-	-	4	3	2
E-HLD 42	-	-	-	4	4	3
E-HLD 52	-	-	-	-	5	3
	Empf	ohlene Läng	sbewehrun	g (Erf. Anzal	nl oben und	unten)
Dorntype	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20

	Empf	ohlene Läng	ısbewehrun	g (Erf. Anzal	ni oben und	unten)
Dorntype	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20
E-HLD 18	2	2	_	-	-	-
E-HLD 22	3	2	2	-	-	-
E-HLD 24	-	2	2	2	-	-
E-HLD 30	-	-	3	2	2	-
E-HLD 35	-	-	3	2	2	-
E-HLD 42	-	-	-	2	2	2
E-HLD 52	-	-	-	3	2	2

Bemerkung: Die angegebene Längsbewehrung geht von einer Anordnung der Dorne mit einem Abstand von mindenstens einem Meter aus. Bei engeren Abständen müssen diese Angaben gegebenenfalls angepasst werden.

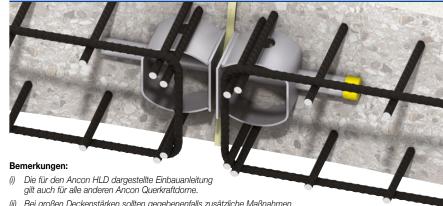
Einbauanleitung

Durch die zweiteilige Ausführung von allen Ancon Querkraftdornen müssen keine Löcher mehr in die Schalungen gebohrt werden, und die Lage des Dorns ist durch die Hülse fixiert. Die Montage gestaltet sich daher einfacher und trotzdem genau. HLD und HLDQ Querkraftdorne werden meist dazu verwendet um vertikale Lasten zu übertragen, daher ist es wichtig bei der Montage auf die Einbauausrichtung zu achten. Sowohl die Dornteile als auch die Hülsenteile sind auf einer Seite mit "Oben" beschriftet, und sollten dementsprechend eingebaut werden. In manchen Anwendungen werden aber auch Kräfte in nicht vertikaler Richtung übertragen. Wichtig ist grundsätzlich, dass die Beschriftung (Oben) immer in Lastrichtung montiert werden muss!

Der Hülsenteil wird mit Nägeln, entsprechend der Lastrichtung ausgerichtet, an der Schalung befestigt. Überprüfen Sie ob die minimalen Rand- und Achsabstände eingehalten wurden. Der Aufkleber schützt den Hülsenteil vor dem Eindringen von Beton oder Zementmilch und sollte zu diesem Zeitpunkt nicht beschädigt werden.

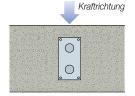
Nach dem Verlegen der erforderlichen Bewehrung und einer letzten Kontrolle, ob ausreichend Bewehrung und Betondeckung vorhanden ist, kann der Beton in die Schalung eingebracht werden. Somit ist der Einbau des Hülsenteiles komplett.

Nachdem der Beton eine ausreichende Festigkeit erreicht hat kann die Schalung entfernt werden. Nun kann der Aufkleber auf dem eingebauten Hülsenteil entfernt oder durchstochen, und der Dorn eingebracht werden. Wichtig: Bei der Verwendung von querbeweglichen Dornen (HLDQ oder ESDQ) sollte der Aufkleber immer mittig durchstochen werden, sodass nur der zylindrische Hülsenteil, der mittig in der Rechteckhülse sitzt, für den Dornteil frei wird und der restliche Teil der Hülse geschützt bleibt.


Nun kann die Fuge mit Fugenfüllmaterial in passender Stärke ausgekleidet werden.

Drücken Sie nun den Dornteil durch das Fugenfüllmaterial bis zum Anschlag in die eingebaute Hülse. Um zu verhindern, dass es zu Verschiebungen des Dornteils beim Betonieren kommt, ist die Hülse mit einer kleinen Quetschung ausgestattet, die den Dornteil im Einbauzustand fixiert. Um diese Quetschung beim Einbringen des Dornteiles zu überwinden, kann leichtes Klopfen erforderlich sein.

Nun kann die Bewehrung um den Dorn verlegt werden, wobei wiederum auf die Bewehrungsdimensionen und die erforderliche Betonüberdeckung geachtet werden muss. Der Einbau wird durch das Einbringen des Betons abgeschlossen.



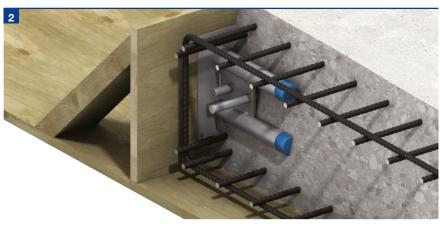
(ii) Bei großen Deckenstärken sollten gegebenenfalls zusätzliche Maßnahmen zur Befestigung von Hülsen- und Domteilen überlegt werden, um eine Verschiebung der Bauteile während dem Einbringen des Betons zu vermeiden.

Einbauanleitung

Durch die zweiteilige Ausführung von allen Ancon Querkraftdornen müssen keine Löcher mehr in die Schalungen gebohrt werden, und die Lage des Dorns ist durch die Hülse fixiert. Die Montage gestaltet sich daher einfacher und trotzdem genau.

DSD und DSDQ Querkraftdorne werden meist dazu verwendet um vertikale Lasten zu übertragen, daher ist es wichtig bei der Montage auf die Einbauausrichtung zu achten. Die zwei Dorne müssen immer übereinander liegen.




Der Hülsenteil wird mit Nägeln, entsprechend der Lastrichtung ausgerichtet, an der Schalung befestigt. Überprüfen Sie ob die minimalen Rand- und Achsabstände eingehalten wurden. Der Aufkleber schützt den Hülsenteil vor dem Eindringen von Beton oder Zementmilch und sollte zu diesem Zeitpunkt nicht beschädigt werden.

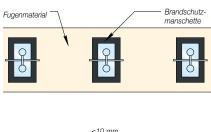
Nachdem der Beton eine ausreichende Festigkeit erreicht hat kann die Schalung entfernt werden. Nun kann der Aufkleber auf dem eingebauten Hülsenteil entfernt oder durchstochen, und der Dorn eingebracht werden. Wichtig: Bei der Verwendung von querbeweglichen Dornen (DSDQ) sollte der Aufkleber immer mittig durchstochen werden, sodass nur der zylindrische Hülsenteil, der mittig in der Rechteckhülse sitzt, für den Dornteil frei wird und der restliche Teil der Hülse geschützt bleibt.

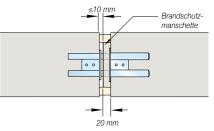
Nun kann die Bewehrung um den Dorn verlegt werden, wobei wiederum auf die Bewehrungsdimensionen und die erforderliche Betonüberdeckung geachtet werden muss. Der Einbau wird durch das Einbringen des Betons abgeschlossen.

Nach dem Verlegen der erforderlichen Bewehrung und einer letzten Kontrolle, ob ausreichend Bewehrung und Betondeckung vorhanden ist, kann der Beton in die Schalung eingebracht werden. Somit ist der Einbau des Hülsenteiles komplett.

Nun kann die Fuge mit Fugenfüllmaterial in passender Stärke ausgekleidet werden.

Drücken Sie nun den Dornteil durch das Fugenfüllmaterial bis zum Anschlag in die eingebaute Hülse. Um zu verhindern, dass es zu Verschiebungen des Dornteils beim Betonieren kommt, ist die Hülse mit einer kleinen Quetschung ausgestattet, die den Dornteil im Einbauzustand fixiert. Um diese Quetschung beim Einbringen des Dornteiles zu überwinden, kann leichtes Klopfen erforderlich sein.

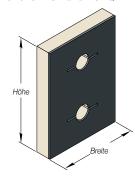



der Bauteile während dem Einbringen des Betons zu vermeiden.

Brandschutzmanschetten für Ancon Querkraftdorne

Für alle Ancon Querkraftdorne gibt es spezielle Brandschutzmanschetten, die eine Brandwiderstandsklasse von R120 aufweisen.

Diese Manschetten sind aus brandbeständigen Materialien (Rockwool- und Promasealplatten) gefertigt, und ersetzen das normale Fugenmaterial rund um den Querkraftdorn. Die Promasealplatte erzeugt bei Brandeinwirkung einen hitze- und brandbeständigen Schaum, der den Querkraftdorn wirkungsvoll schützt. Die Brandschutzmanschetten werden in Dicken zu 20mm, 30mm geliefert. Für Fugenstärken von 40-60mm müssen jeweils 2 Manschetten eingebaut werden. Die für die Brandschutzmanschetten vorgestanzten Löcher passen immer zu der jeweiligen Dorntype.

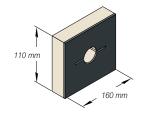


Abmessungen

Typ DSD und DSDQ	Breite/Höhe (mm)	
30	110x160	
50	110x160	
65	110x160	
75	110x160	
100	170x250	
130	170x250	
150	170x250	
400	300x350	
450	300x350	

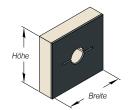
Typ DSDS und DSDQS	Breite/Höhe (mm)
30	110x160
50	110~160

Manschette für DSD und DSDQ



Verfügbare Dicken: 20mm und 30mm Andere Dimensionen sind auf Anfrage verfügbar.

Typ	ED/ESD	und ES	DO B	reite/l	Häha	mml


10	160x110
15	160x110
18	160x110
20	160x110
25	160x110

Manschette für ED/ESD und ESDQ

Typ HLD und HLDQ	Breite/Höhe (mm)	
18	160x110	
22	160x110	
24	160x110	
30	250x170	
35	250x170	
42	250x250	
52	350x300	

Manschette für HLD und HLDQ

Weitere Ancon Produkte

Das Ancon-TT Betonstahl-Kupplungssystem ist ein kosteneffektives und baustellenfreundliches Betonstahl-Kupplungssystem für Betonstahl B500B. Die Betonstähle mit Durchmesser 12 mm – 40 mm werden schnell, einfach und sicher auf der Baustelle miteinander verbunden. Das TT- Betonstahlkupplungssystem hat eine deutsche Zulassung und wird unter der Qualitätssicherung ISO 9001 hergestellt.

Ancon-MBT Betonstahlkupplungen sind einfach, sicher und schnell einzubauen, auch dort, wo Platz ein Problem oder ein Drehen der Bewehrung unmöglich ist. Wichtigste Vorteile: Kein Gewindeschneiden, keine Schweißung, visuelle Kontrolle auf der Baustelle durch Bauleitung möglich. MBT ist ÜA-Zertifiziert und hat zahlreiche internationale Zulassungen (USA, Deutschland, etc.).

Ancon nichtrostende Stähle RIPINOX®, CORRFIX®, DUPLEX, NIRO22, NIRO25 und BETINOX®, sind warmgewalzte und teilweise kaltverformte korrosionsbeständige Rundstähle, mit hohen Festigkeiten, in gerippter und glatter Ausführung. Die Verwendung von korrosionssicherem Stahl in der Bauindustrie nimmt stetig zu. Wir haben den rostfreien Stahl für Ihre Anwendung, seien es Anschlussarmierungen, Verankerung oder Vorspannung. Fragen Sie uns an.

Ancon Zugstangensysteme

Ancon Zug- und Druckstangensysteme werden zunehmend in modernen Gebäuden eingesetzt. Sie sorgen sowohl für Gefügespannung und Druckaussteifung als auch für die ästhetische Optik der Konstruktion. Sie sind funktionell, langlebig, wartungsfrei und vielfältig kombinierbar – von der einfachen Befestigung bis hin zu komplexen Konstruktionen.

Sonderkonstruktionen

Im Laufe der Jahre haben wir uns auf die Verarbeitung verschiedenster Typen von Edelstählen spezialisiert.

Wir entwickeln und produzieren hochwertige Komponenten für verschiedenste Industriebereiche. z.B. Hochbau, Ingenieurtiefbau, Infrastruktur- und Brückenbau, Kläranlagen, Atomkraftanlagen und den Bergwerksbereich.

Leviat Kontakt / Schweiz

Für weitere Produktinformationen wenden Sie sich bitte an Leviat:

Vertrieb

Leviat AGGrenzstrasse 24
3250 Lyss

Tel.: +41 (0) 800 22 66 00 E-Mail: info.ch@leviat.com

Bestellungen

bestellung.ch@leviat.com

Verkaufsbüro Wallisellen

Hertistrasse 25 8304 Wallisellen

Tel.: +41 (0) 800 22 66 00 E-Mail: info.ch@leviat.com

Angebotsanfragen

offerten.ch@leviat.com

Weltweite Kontakte zu Leviat

Australien

98 Kurrajong Avenue, Mount Druitt, Sydney, NSW 2770 Tel.: +61 - 2 8808 3100 E-Mail: info.au@leviat.com

Belgien

Industrielaan 2 1740 Ternat

Tel.: +32 - 2 - 582 29 45 E-Mail: info.be@leviat.com

Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street

Chaoyang District

Beijing · P.R. China 100020 Tel.: +86 - 10 5907 3200 E-Mail: info.cn@leviat.com

Deutschland

Liebigstrasse 14 40764 Langenfeld Tel.: +49 - 2173 - 970 - 0 E-Mail: info.de@leviat.com

Finnland

Vädursgatan 5 412 50 Göteborg/Schweden Tel.: +358 (0)10 6338781 E-Mail: info.fi@leviat.com

Frankreich

6, Rue de Cabanis FR 31240 L'Union Toulouse

Tel.: +33 - 5 - 34 25 54 82 E-Mail: info.fr@leviat.com

Indien

309, 3rd Floor, Orion Business Park Ghodbunder Road, Kapurbawdi, Thane West, Thane, Maharashtra 400607

Tel.: +91 - 22 2589 2032 E-Mail: info.in@leviat.com

Italien

Via F.IIi Bronzetti 28 24124 Bergamo Tel.: +39 - 035 - 0760711

E-Mail: info.it@leviat.com

Malaysia

28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel.: +603 - 5122 4182 E-Mail: info.my@leviat.com

Neuseeland

2/19 Nuttall Drive, Hillsborough, Christchurch 8022

Tel.: +64 - 3 376 5205 E-Mail: info.nz@leviat.com

Niederlande

Slachthuisweg 10 7556 AX Hengelo Tel: +31 - 74 - 267 14 49 E-Mail: info.nl@leviat.com

Österreich

Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel.: +43 - 1 - 259 6770 E-Mail: info.at@leviat.com

Philippinen

2933 Regus, Joy Nostalg, ADB Avenue Ortigas Center Pasig City Tel.: +63 - 2 7957 6381

E-Mail: info.ph@leviat.com

Polen

UI. Obornicka 287 60-691 Poznań

Tel.: +48 - 61 - 622 14 14 E-Mail: info.pl@leviat.com

Schweden

Vädursgatan 5 412 50 Göteborg Tel.: +46 - 31 - 98 58 00

E-Mail: info.se@leviat.com

Schweiz

Grenzstrasse 24 3250 Lyss Tel.: +41 (0)800 22 66 00 E-Mail: info.ch@leviat.com

Singapur

14 Benoi Crescent Singapore 629977 Tel.: +65 - 6266 6802 E-Mail: info.sg@leviat.com

Spanien

Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel.: +34 - 91 632 18 40 E-Mail: info.es@leviat.com

Pekařská 695/10a 155 00 Praha 5 Tel.: +420 - 311 - 690 060 E-Mail: info.cz@leviat.com

USA/Kanada

6467 S Falkenburg Road Riverview, FL 33578 Tel.: (800) 423-9140 E-Mail: info.us@leviat.us

Vereinigte Arabische Emirate

RA08 TB02, PO Box 17225 JAFZA, Jebel Ali, Dubai Tel.: +971 (0)4 883 4346 E-Mail: info.ae@leviat.com

Vereinigtes Königreich

President Way, President Park, Sheffield, S4 7UR Tel.: +44 - 114 275 5224 E-Mail: info.uk@leviat.com

Für nicht aufgeführte Länder

E-Mail: info@leviat.com

Hinweise zu diesem Katalog

© Urheberrechtlich geschützt. Die in dieser Publikation enthaltenen Konstruktionsbeispiele und Angaben dienen einzig und allein als Anregungen. Bei jeglicher Projektausarbeitung müssen entsprechend qualifizierte und erfahrene Fachleute hinzugezogen werden. Die Inhalte dieser Publikation wurden mit größtmöglicher Sorgfalt erstellt. Dennoch übernimmt Leviat keinerlei Haftung oder Verantwortung für Ungenauigkeiten oder Druckfehler. Technische und konstruktive Änderungen vorbehalten. Mit einer Philosophie der ständigen Produktentwicklung behält sich Leviat das Recht vor, das Produktdesign sowie Spezifikationen jederzeit zu ändern.